Mimetic inflation

Abstract

We study inflationary solution in an extension of mimetic gravity with the higher derivative interactions coupled to gravity. Because of the higher derivative interactions the setup is free from the ghost and gradient instabilities while it hosts a number of novel properties. The dispersion relation of scalar perturbations develop quartic momentum correction similar to the setup of ghost inflation. Furthermore, the tilt of tensor perturbations can take either signs with a modified consistency relation between the tilt and the amplitude of tensor perturbations. Despite the presence of higher derivative interactions coupled to gravity the tensor perturbations propagate with the speed equal to the speed of light as required by the LIGO observations. Furthermore, the higher derivative interactions induce non-trivial interactions in cubic Hamiltonian, generating non-Gaussianities in various shapes such as the equilateral, orthogonal and squeezed configurations with observable amplitudes.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    A.H. Chamseddine and V. Mukhanov, Mimetic Dark Matter, JHEP 11 (2013) 135 [arXiv:1308.5410] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    N. Deruelle and J. Rua, Disformal Transformations, Veiled General Relativity and Mimetic Gravity, JCAP 09 (2014) 002 [arXiv:1407.0825] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    F.-F. Yuan and P. Huang, Induced geometry from disformal transformation, Phys. Lett. B 744 (2015) 120 [arXiv:1501.06135] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  4. [4]

    A.H. Chamseddine, V. Mukhanov and A. Vikman, Cosmology with Mimetic Matter, JCAP 06 (2014) 017 [arXiv:1403.3961] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    A.H. Chamseddine and V. Mukhanov, Resolving Cosmological Singularities, JCAP 03 (2017) 009 [arXiv:1612.05860] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    A.H. Chamseddine and V. Mukhanov, Nonsingular Black Hole, Eur. Phys. J. C 77 (2017) 183 [arXiv:1612.05861] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    L. Mirzagholi and A. Vikman, Imperfect Dark Matter, JCAP 06 (2015) 028 [arXiv:1412.7136] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    R. Myrzakulov, L. Sebastiani, S. Vagnozzi and S. Zerbini, Static spherical ly symmetric solutions in mimetic gravity: rotation curves and wormholes, Class. Quant. Grav. 33 (2016) 125005 [arXiv:1510.02284] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  9. [9]

    F. Arroja, N. Bartolo, P. Karmakar and S. Matarrese, Cosmological perturbations in mimetic Horndeski gravity, JCAP 04 (2016) 042 [arXiv:1512.09374] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    L. Sebastiani, S. Vagnozzi and R. Myrzakulov, Mimetic gravity: a review of recent developments and applications to cosmology and astrophysics, Adv. High Energy Phys. 2017 (2017) 3156915 [arXiv:1612.08661] [INSPIRE].

    Article  Google Scholar 

  11. [11]

    J. Dutta, W. Khyllep, E.N. Saridakis, N. Tamanini and S. Vagnozzi, Cosmological dynamics of mimetic gravity, JCAP 02 (2018) 041 [arXiv:1711.07290] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    H. Saadi, A Cosmological Solution to Mimetic Dark Matter, Eur. Phys. J. C 76 (2016) 14 [arXiv:1411.4531] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    H. Firouzjahi, M.A. Gorji, S.A. Hosseini Mansoori, A. Karami and T. Rostami, Two-field disformal transformation and mimetic cosmology, JCAP 11 (2018) 046 [arXiv:1806.11472] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    M.A. Gorji, A. Allahyari, M. Khodadi and H. Firouzjahi, Mimetic black holes, Phys. Rev. D 101 (2020) 124060 [arXiv:1912.04636] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    J. Matsumoto, S.D. Odintsov and S.V. Sushkov, Cosmological perturbations in a mimetic matter model, Phys. Rev. D 91 (2015) 064062 [arXiv:1501.02149] [INSPIRE].

  16. [16]

    D. Momeni, K. Myrzakulov, R. Myrzakulov and M. Raza, Cylindrical solutions in Mimetic gravity, Eur. Phys. J. C 76 (2016) 301 [arXiv:1505.08034] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  17. [17]

    A.V. Astashenok and S.D. Odintsov, From neutron stars to quark stars in mimetic gravity, Phys. Rev. D 94 (2016) 063008 [arXiv:1512.07279] [INSPIRE].

  18. [18]

    N. Sadeghnezhad and K. Nozari, Braneworld Mimetic Cosmology, Phys. Lett. B 769 (2017) 134 [arXiv:1703.06269] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  19. [19]

    K. Nozari and N. Rashidi, Mimetic DBI Inflation in Confrontation with Planck2018 data, Astrophys. J. 882 (2019) 78 [arXiv:1912.06050] [INSPIRE].

  20. [20]

    A.R. Solomon, V. Vardanyan and Y. Akrami, Massive mimetic cosmology, Phys. Lett. B 794 (2019) 135 [arXiv:1902.08533] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  21. [21]

    L. Shen, Y. Zheng and M. Li, Two-field mimetic gravity revisited and Hamiltonian analysis, JCAP 12 (2019) 026 [arXiv:1909.01248] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    A. Ganz, N. Bartolo and S. Matarrese, Towards a viable effective field theory of mimetic gravity, JCAP 12 (2019) 037 [arXiv:1907.10301] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    M. de Cesare, Reconstruction of Mimetic Gravity in a Non-SingularBouncing Universe from Quantum Gravity, Universe 5 (2019) 107 [arXiv:1904.02622] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    K. Nozari and N. Sadeghnezhad, Braneworld mimetic f (R) gravity, Int. J. Geom. Meth. Mod. Phys. 16 (2019) 1950042 [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  25. [25]

    M. de Cesare, Limiting curvature mimetic gravity for group field theory condensates, Phys. Rev. D 99 (2019) 063505 [arXiv:1812.06171] [INSPIRE].

  26. [26]

    A. Ganz, P. Karmakar, S. Matarrese and D. Sorokin, Hamiltonian analysis of mimetic scalar gravity revisited, Phys. Rev. D 99 (2019) 064009 [arXiv:1812.02667] [INSPIRE].

  27. [27]

    A. Ganz, N. Bartolo, P. Karmakar and S. Matarrese, Gravity in mimetic scalar-tensor theories after GW170817, JCAP 01 (2019) 056 [arXiv:1809.03496] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    A. Sheykhi and S. Grunau, Topological black holes in mimetic gravity, arXiv:1911.13072 [INSPIRE].

  29. [29]

    A. Sheykhi, Mimetic gravity in (2 + 1)-dimensions, JHEP 01 (2021) 043 [arXiv:2009.12826] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    A. Sheykhi, Mimetic Black Strings, JHEP 07 (2020) 031 [arXiv:2002.11718] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  31. [31]

    S. Nojiri and S.D. Odintsov, Mimetic F (R) gravity: inflation, dark energy and bounce, Mod. Phys. Lett. A 29 (2014) 1450211 [arXiv:1408.3561] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  32. [32]

    A.V. Astashenok, S.D. Odintsov and V.K. Oikonomou, Modified Gauss-Bonnet gravity with the Lagrange multiplier constraint as mimetic theory, Class. Quant. Grav. 32 (2015) 185007 [arXiv:1504.04861] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  33. [33]

    S. Nojiri, S.D. Odintsov and V.K. Oikonomou, Unimodular-Mimetic Cosmology, Class. Quant. Grav. 33 (2016) 125017 [arXiv:1601.07057] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  34. [34]

    S. Nojiri, S.D. Odintsov and V.K. Oikonomou, Ghost-Free F (R) Gravity with Lagrange Multiplier Constraint, Phys. Lett. B 775 (2017) 44 [arXiv:1710.07838] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  35. [35]

    S. Nojiri, S.D. Odintsov and V.K. Oikonomou, Viable Mimetic Completion of Unified Inflation-Dark Energy Evolution in Modified Gravity, Phys. Rev. D 94 (2016) 104050 [arXiv:1608.07806] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    S.D. Odintsov and V.K. Oikonomou, The reconstruction of f (𝜙)R and mimetic gravity from viable slow-rol l inflation, Nucl. Phys. B 929 (2018) 79 [arXiv:1801.10529] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  37. [37]

    A. Casalino, M. Rinaldi, L. Sebastiani and S. Vagnozzi, Alive and wel l: mimetic gravity and a higher-order extension in light of GW170817, Class. Quant. Grav. 36 (2019) 017001 [arXiv:1811.06830] [INSPIRE].

  38. [38]

    A.O. Bärvinsky, Dark matter as a ghost free conformal extension of Einstein theory, JCAP 01 (2014) 014 [arXiv:1311.3111] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    M. Chaichian, J. Kluson, M. Oksanen and A. Tureanu, Mimetic dark matter, ghost instability and a mimetic tensor-vector-scalar gravity, JHEP 12 (2014) 102 [arXiv:1404.4008] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    A. Ijjas, J. Ripley and P.J. Steinhardt, NEC violation in mimetic cosmology revisited, Phys. Lett. B 760 (2016) 132 [arXiv:1604.08586] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  41. [41]

    H. Firouzjahi, M.A. Gorji and S.A. Hosseini Mansoori, Instabilities in Mimetic Matter Perturbations, JCAP 07 (2017) 031 [arXiv:1703.02923] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. [42]

    S. Ramazanov, F. Arroja, M. Celoria, S. Matarrese and L. Pilo, Living with ghosts in Hořava-Lifshitz gravity, JHEP 06 (2016) 020 [arXiv:1601.05405] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  43. [43]

    F. Capela and S. Ramazanov, Modified Dust and the Smal l Scale Crisis in CDM, JCAP 04 (2015) 051 [arXiv:1412.2051] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    A. De Felice and S. Mukohyama, Phenomenology in minimal theory of massive gravity, JCAP 04 (2016) 028 [arXiv:1512.04008] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  45. [45]

    A.E. Gümrükccüoğlu, S. Mukohyama and T.P. Sotiriou, Low energy ghosts and the Jeans’ instability, Phys. Rev. D 94 (2016) 064001 [arXiv:1606.00618] [INSPIRE].

  46. [46]

    E. Babichev and S. Ramazanov, Gravitational focusing of Imperfect Dark Matter, Phys. Rev. D 95 (2017) 024025 [arXiv:1609.08580] [INSPIRE].

  47. [47]

    E. Babichev and S. Ramazanov, Caustic free completion of pressureless perfect fluid and k-essence, JHEP 08 (2017) 040 [arXiv:1704.03367] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  48. [48]

    M.A. Gorji, S. Mukohyama, H. Firouzjahi and S.A. Hosseini Mansoori, Gauge Field Mimetic Cosmology, JCAP 08 (2018) 047 [arXiv:1807.06335] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  49. [49]

    M.A. Gorji, S. Mukohyama and H. Firouzjahi, Cosmology in Mimetic SU(2) Gauge Theory, JCAP 05 (2019) 019 [arXiv:1903.04845] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. [50]

    Y. Zheng, L. Shen, Y. Mou and M. Li, On (in)stabilities of perturbations in mimetic models with higher derivatives, JCAP 08 (2017) 040 [arXiv:1704.06834] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. [51]

    S. Hirano, S. Nishi and T. Kobayashi, Healthy imperfect dark matter from effective theory of mimetic cosmological perturbations, JCAP 07 (2017) 009 [arXiv:1704.06031] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. [52]

    M.A. Gorji, S.A. Hosseini Mansoori and H. Firouzjahi, Higher Derivative Mimetic Gravity, JCAP 01 (2018) 020 [arXiv:1709.09988] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. [53]

    N. Arkani-Hamed, P. Creminelli, S. Mukohyama and M. Zaldarriaga, Ghost inflation, JCAP 04 (2004) 001 [hep-th/0312100] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  54. [54]

    C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The Effective Field Theory of Inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  55. [55]

    M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505 [hep-th/0404084] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641 (2020) A10 [arXiv:1807.06211] [INSPIRE].

  57. [57]

    Planck collaboration, Planck 2018 results. IX. Constraints on primordial non-Gaussianity, Astron. Astrophys. 641 (2020) A9 [arXiv:1905.05697] [INSPIRE].

  58. [58]

    Y. Zheng, Hamiltonian analysis of Mimetic gravity with higher derivatives, JHEP 01 (2021) 085 [arXiv:1810.03826] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    A. Golovnev, On the recently proposed Mimetic Dark Matter, Phys. Lett. B 728 (2014) 39 [arXiv:1310.2790] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  60. [60]

    J. Khoury, B.A. Ovrut, P.J. Steinhardt and N. Turok, The Ekpyrotic universe: Col liding branes and the origin of the hot big bang, Phys. Rev. D 64 (2001) 123522 [hep-th/0103239] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  61. [61]

    R. Kallosh, L. Kofman and A.D. Linde, Pyrotechnic universe, Phys. Rev. D 64 (2001) 123523 [hep-th/0104073] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  62. [62]

    F. Finelli and R. Brandenberger, On the generation of a scale invariant spectrum of adiabatic fluctuations in cosmological models with a contracting phase, Phys. Rev. D 65 (2002) 103522 [hep-th/0112249] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    E.I. Buchbinder, J. Khoury and B.A. Ovrut, New Ekpyrotic cosmology, Phys. Rev. D 76 (2007) 123503 [hep-th/0702154] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  64. [64]

    E.I. Buchbinder, J. Khoury and B.A. Ovrut, On the initial conditions in new ekpyrotic cosmology, JHEP 11 (2007) 076 [arXiv:0706.3903] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  65. [65]

    A.D. Linde, Fast rol l inflation, JHEP 11 (2001) 052 [hep-th/0110195] [INSPIRE].

    ADS  Article  Google Scholar 

  66. [66]

    J.B. Hartle, S.W. Hawking and T. Hertog, Accelerated Expansion from Negative Λ, arXiv:1205.3807 [INSPIRE].

  67. [67]

    T. Fujita, X. Gao and J. Yokoyama, Spatial ly covariant theories of gravity: disformal transformation, cosmological perturbations and the Einstein frame, JCAP 02 (2016) 014 [arXiv:1511.04324] [INSPIRE].

    ADS  Google Scholar 

  68. [68]

    S. Corley and T. Jacobson, Hawking spectrum and high frequency dispersion, Phys. Rev. D 54 (1996) 1568 [hep-th/9601073] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    S. Corley, Computing the spectrum of black hole radiation in the presence of high frequency dispersion: An Analytical approach, Phys. Rev. D 57 (1998) 6280 [hep-th/9710075] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  70. [70]

    J. Martin and R.H. Brandenberger, The TransPlanckian problem of inflationary cosmology, Phys. Rev. D 63 (2001) 123501 [hep-th/0005209] [INSPIRE].

    ADS  Article  Google Scholar 

  71. [71]

    J. Martin and R.H. Brandenberger, The Corley-Jacobson dispersion relation and transPlanckian inflation, Phys. Rev. D 65 (2002) 103514 [hep-th/0201189] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    A. Ashoorioon, D. Chialva and U. Danielsson, Effects of Nonlinear Dispersion Relations on Non-Gaussianities, JCAP 06 (2011) 034 [arXiv:1104.2338] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    A. Ashoorioon, R. Casadio, M. Cicoli, G. Geshnizjani and H.J. Kim, Extended Effective Field Theory of Inflation, JHEP 02 (2018) 172 [arXiv:1802.03040] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  74. [74]

    A. Ashoorioon, Non-Unitary Evolution in the General Extended EFT of Inflation & Excited Initial States, JHEP 12 (2018) 012 [arXiv:1807.06511] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  75. [75]

    M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, vol. 55, US Government printing office (1948).

  76. [76]

    X. Chen, M.-x. Huang, S. Kachru and G. Shiu, Observational signatures and non-Gaussianities of general single field inflation, JCAP 01 (2007) 002 [hep-th/0605045] [INSPIRE].

    ADS  Article  Google Scholar 

  77. [77]

    LIGO Scientific, Virgo, Fermi-GBM and INTEGRAL collaborations, Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A, Astrophys. J. Lett. 848 (2017) L13 [arXiv:1710.05834] [INSPIRE].

  78. [78]

    J. Sakstein and B. Jain, Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories, Phys. Rev. Lett. 119 (2017) 251303 [arXiv:1710.05893] [INSPIRE].

    ADS  Article  Google Scholar 

  79. [79]

    T. Baker, E. Bellini, P.G. Ferreira, M. Lagos, J. Noller and I. Sawicki, Strong constraints on cosmological gravity from GW170817 and GRB 170817A, Phys. Rev. Lett. 119 (2017) 251301 [arXiv:1710.06394] [INSPIRE].

    ADS  Article  Google Scholar 

  80. [80]

    J. Khoury, Fading gravity and self-inflation, Phys. Rev. D 76 (2007) 123513 [hep-th/0612052] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  81. [81]

    A.S. Koshelev, K. Sravan Kumar, A. Mazumdar and A.A. Starobinsky, Non-Gaussianities and tensor-to-scalar ratio in non-local R2 -like inflation, JHEP 06 (2020) 152 [arXiv:2003.00629] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  82. [82]

    E. Babichev, V. Mukhanov and A. Vikman, k-Essence, superluminal propagation, causality and emergent geometry, JHEP 02 (2008) 101 [arXiv:0708.0561] [INSPIRE].

  83. [83]

    Y. Aharonov, A. Komar and L. Susskind, Superluminal behavior, causality, and instability, Phys. Rev. 182 (1969) 1400 [INSPIRE].

    ADS  Article  Google Scholar 

  84. [84]

    J. Garriga and V.F. Mukhanov, Perturbations in k-inflation, Phys. Lett. B 458 (1999) 219 [hep-th/9904176] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  85. [85]

    J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

  86. [86]

    V. Acquaviva, N. Bartolo, S. Matarrese and A. Riotto, Second order cosmological perturbations from inflation, Nucl. Phys. B 667 (2003) 119 [astro-ph/0209156] [INSPIRE].

  87. [87]

    A. De Felice and S. Tsujikawa, Primordial non-Gaussianities in general modified gravitational models of inflation, JCAP 04 (2011) 029 [arXiv:1103.1172] [INSPIRE].

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alireza Talebian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2010.13495

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mansoori, S.A.H., Talebian, A. & Firouzjahi, H. Mimetic inflation. J. High Energ. Phys. 2021, 183 (2021). https://doi.org/10.1007/JHEP01(2021)183

Download citation

Keywords

  • Cosmology of Theories beyond the SM
  • Classical Theories of Gravity
  • Effective Field Theories