Critical islands

Abstract

We discuss a doubly-holographic prescription for black holes in braneworlds with a vanishing cosmological constant. It involves calculating Ryu-Takayanagi surfaces in AdS black funnel spacetimes attached to braneworld black holes in the critical Randall- Sundrum II model. Critical braneworlds have the virtue of having massless gravitons. Our approach should be useful when the braneworld is a cosmological black hole interacting with deconfined, large-N matter. In higher dimensions, explicit funnel metrics will have to be constructed numerically — but based on the general structure of the geometry, we present a natural guess for where one might find the semi-classical island. In a 3-dimensional example where a toy analytic black funnel is known, we can check our guess by direct calculation. We argue that this resolves a version of the information paradox in these braneworld systems, by finding strong evidence for “cosmological islands”. Comoving Ryu-Takayanagi surfaces and associated UV cut-offs on the brane, play natural roles.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S.W. Hawking, Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    D.N. Page, Information in black hole radiation, Phys. Rev. Lett. 71 (1993) 3743 [hep-th/9306083] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    S.D. Mathur, The Information paradox: A Pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    G. Penington, Entanglement Wedge Reconstruction and the Information Paradox, JHEP 09 (2020) 002 [arXiv:1905.08255] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, JHEP 12 (2019) 063 [arXiv:1905.08762] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    N. Engelhardt and A.C. Wall, Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime, JHEP 01 (2015) 073 [arXiv:1408.3203] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, The Page curve of Hawking radiation from semiclassical geometry, JHEP 03 (2020) 149 [arXiv:1908.10996] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    A. Almheiri, R. Mahajan and J.E. Santos, Entanglement islands in higher dimensions, SciPost Phys. 9 (2020) 001 [arXiv:1911.09666] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    A. Karch and L. Randall, Locally localized gravity, JHEP 05 (2001) 008 [hep-th/0011156] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    A. Almheiri, R. Mahajan and J. Maldacena, Islands outside the horizon, arXiv:1910.11077 [INSPIRE].

  15. [15]

    A.L. Fitzpatrick, L. Randall and T. Wiseman, On the existence and dynamics of braneworld black holes, JHEP 11 (2006) 033 [hep-th/0608208] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    V.E. Hubeny, D. Marolf and M. Rangamani, Black funnels and droplets from the AdS C-metrics, Class. Quant. Grav. 27 (2010) 025001 [arXiv:0909.0005] [INSPIRE].

  17. [17]

    J.E. Santos and B. Way, Black Droplets, JHEP 08 (2014) 072 [arXiv:1405.2078] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    S.D. Mathur, What is the dual of two entangled CFTs?, arXiv:1402.6378 [INSPIRE].

  19. [19]

    C. Krishnan, V. Patil and J. Pereira, Page Curve and the Information Paradox in Flat Space, arXiv:2005.02993 [INSPIRE].

  20. [20]

    C. Krishnan, Bulk Locality and Asymptotic Causal Diamonds, SciPost Phys. 7 (2019) 057 [arXiv:1902.06709] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    A. Laddha, S.G. Prabhu, S. Raju and P. Shrivastava, The Holographic Nature of Null Infinity, arXiv:2002.02448 [INSPIRE].

  22. [22]

    F.F. Gautason, L. Schneiderbauer, W. Sybesma and L. Thorlacius, Page Curve for an Evaporating Black Hole, JHEP 05 (2020) 091 [arXiv:2004.00598] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    T. Anegawa and N. Iizuka, Notes on islands in asymptotically flat 2d dilaton black holes, JHEP 07 (2020) 036 [arXiv:2004.01601] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    T. Hartman, E. Shaghoulian and A. Strominger, Islands in Asymptotically Flat 2D Gravity, JHEP 07 (2020) 022 [arXiv:2004.13857] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    M. Alishahiha, A. Faraji Astaneh and A. Naseh, Island in the Presence of Higher Derivative Terms, arXiv:2005.08715 [INSPIRE].

  26. [26]

    D. Bak, C. Kim, S.-H. Yi and J. Yoon, Unitarity of Entanglement and Islands in Two-SidedJanus Black Holes, arXiv:2006.11717 [INSPIRE].

  27. [27]

    T. Li, J. Chu and Y. Zhou, Reflected Entropy for an Evaporating Black Hole, JHEP 11 (2020) 155 [arXiv:2006.10846] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    V.E. Hubeny, D. Marolf and M. Rangamani, Hawking radiation in large N strongly-coupled field theories, Class. Quant. Grav. 27 (2010) 095015 [arXiv:0908.2270] [INSPIRE].

  29. [29]

    P. Kraus, Dynamics of anti-de Sitter domain walls, JHEP 12 (1999) 011 [hep-th/9910149] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    J.E. Santos and B. Way, Black Funnels, JHEP 12 (2012) 060 [arXiv:1208.6291] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    T. Hartman, Y. Jiang and E. Shaghoulian, Islands in cosmology, JHEP 11 (2020) 111 [arXiv:2008.01022] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, The entropy of Hawking radiation, arXiv:2006.06872 [INSPIRE].

  33. [33]

    X. Dong, X.-L. Qi, Z. Shangnan and Z. Yang, Effective entropy of quantum fields coupled with gravity, JHEP 10 (2020) 052 [arXiv:2007.02987] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    B.S. Kay and R.M. Wald, Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasifree States on Space-Times with a Bifurcate Killing Horizon, Phys. Rept. 207 (1991) 49 [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    H. Geng and A. Karch, Massive islands, JHEP 09 (2020) 121 [arXiv:2006.02438] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    M. Porrati, Mass and gauge invariance 4. Holography for the Karch-Randall model, Phys. Rev. D 65 (2002) 044015 [hep-th/0109017] [INSPIRE].

  38. [38]

    J.F. Plebanski and M. Demianski, Rotating, charged, and uniformly accelerating mass in general relativity, Annals Phys. 98 (1976) 98 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    P. Figueras and T. Wiseman, Gravity and large black holes in Randall-Sundrum II braneworlds, Phys. Rev. Lett. 107 (2011) 081101 [arXiv:1105.2558] [INSPIRE].

  40. [40]

    S. de Haro, K. Skenderis and S.N. Solodukhin, Gravity in warped compactifications and the holographic stress tensor, Class. Quant. Grav. 18 (2001) 3171 [hep-th/0011230] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    P. Figueras, J. Lucietti and T. Wiseman, Ricci solitons, Ricci flow, and strongly coupled CFT in the Schwarzschild Unruh or Boulware vacua, Class. Quant. Grav. 28 (2011) 215018 [arXiv:1104.4489] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. [42]

    T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. [43]

    C. Krishnan et al., work in progress.

  44. [44]

    H.Z. Chen, R.C. Myers, D. Neuenfeld, I.A. Reyes and J. Sandor, Quantum Extremal Islands Made Easy, Part I: Entanglement on the Brane, JHEP 10 (2020) 166 [arXiv:2006.04851] [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    S. Hawking, Gravitationally collapsed objects of very low mass, Mon. Not. Roy. Astron. Soc. 152 (1971) 75 [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chethan Krishnan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2007.06551

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krishnan, C. Critical islands. J. High Energ. Phys. 2021, 179 (2021). https://doi.org/10.1007/JHEP01(2021)179

Download citation

Keywords

  • AdS-CFT Correspondence
  • Black Holes in String Theory