Exploring new physics with O(keV) electron recoils in direct detection experiments


Motivated by the recent XENON1T results, we explore various new physics models that can be discovered through searches for electron recoils in \( \mathcal{O} \)(keV)-threshold direct-detection experiments. First, we consider the absorption of axion-like particles, dark photons, and scalars, either as dark matter relics or being produced directly in the Sun. In the latter case, we find that keV mass bosons produced in the Sun provide an adequate fit to the data but are excluded by stellar cooling constraints. We address this tension by introducing a novel Chameleon-like axion model, which can explain the excess while evading the stellar bounds. We find that absorption of bosonic dark matter provides a viable explanation for the excess only if the dark matter is a dark photon or an axion. In the latter case, photophobic axion couplings are necessary to avoid X-ray constraints. Second, we analyze models of dark matter-electron scattering to determine which models might explain the excess. Standard scattering of dark matter with electrons is generically in conflict with data from lower-threshold experiments. Momentum-dependent interactions with a heavy mediator can fit the data with dark matter mass heavier than a GeV but are generically in tension with collider constraints. Next, we consider dark matter consisting of two (or more) states that have a small mass splitting. The exothermic (down)scattering of the heavier state to the lighter state can fit the data for keV mass splittings. Finally, we consider a subcomponent of dark matter that is accelerated by scattering off cosmic rays, finding that dark matter interacting though an \( \mathcal{O} \)(100 keV)-mass mediator can fit the data. The cross sections required in this scenario are, however, typically challenged by complementary probes of the light mediator. Throughout our study, we implement an unbinned Monte Carlo analysis and use an improved energy reconstruction of the XENON1T events.

A preprint version of the article is available at ArXiv.


  1. [1]

    XENON collaboration, Excess electronic recoil events in XENON1T, Phys. Rev. D 102 (2020) 072004 [arXiv:2006.09721] [INSPIRE].

  2. [2]

    S. Dimopoulos, G.D. Starkman and B.W. Lynn, Atomic Enhancements in the Detection of Weakly Interacting Particles, Phys. Lett. B 168 (1986) 145 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    F.T. Avignone et al., Laboratory Limits on Solar Axions From an Ultralow Background Germanium Spectrometer, Phys. Rev. D 35 (1987) 2752 [INSPIRE].

  4. [4]

    M. Pospelov, A. Ritz and M.B. Voloshin, Bosonic super-WIMPs as keV-scale dark matter, Phys. Rev. D 78 (2008) 115012 [arXiv:0807.3279] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    A. Derevianko, V.A. Dzuba, V.V. Flambaum and M. Pospelov, Axio-electric effect, Phys. Rev. D 82 (2010) 065006 [arXiv:1007.1833] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    K. Arisaka et al., Expected Sensitivity to Galactic/Solar Axions and Bosonic Super-WIMPs based on the Axio-electric Effect in Liquid Xenon Dark Matter Detectors, Astropart. Phys. 44 (2013) 59 [arXiv:1209.3810] [INSPIRE].

  7. [7]

    H. An, M. Pospelov and J. Pradler, Dark Matter Detectors as Dark Photon Helioscopes, Phys. Rev. Lett. 111 (2013) 041302 [arXiv:1304.3461] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    I.M. Bloch, R. Essig, K. Tobioka, T. Volansky and T.-T. Yu, Searching for Dark Absorption with Direct Detection Experiments, JHEP 06 (2017) 087 [arXiv:1608.02123] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    Y. Hochberg, T. Lin and K.M. Zurek, Absorption of light dark matter in semiconductors, Phys. Rev. D 95 (2017) 023013 [arXiv:1608.01994] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    G.G. Raffelt, Stars as laboratories for fundamental physics, Chicago University Press, U.S.A. (1996), http://wwwth.mpp.mpg.de/members/raffelt/mypapers/199613.pdf.

  11. [11]

    J. Redondo, Helioscope Bounds on Hidden Sector Photons, JCAP 07 (2008) 008 [arXiv:0801.1527] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    H. An, M. Pospelov, J. Pradler and A. Ritz, Direct Detection Constraints on Dark Photon Dark Matter, Phys. Lett. B 747 (2015) 331 [arXiv:1412.8378] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    J. Redondo and G. Raffelt, Solar constraints on hidden photons re-visited, JCAP 08 (2013) 034 [arXiv:1305.2920] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    R. Budnik, O. Davidi, H. Kim, G. Perez and N. Priel, Searching for a solar relaxion or scalar particle with XENON1T and LUX, Phys. Rev. D 100 (2019) 095021 [arXiv:1909.02568] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    R. Essig, J. Mardon and T. Volansky, Direct Detection of Sub-GeV Dark Matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    R. Essig, A. Manalaysay, J. Mardon, P. Sorensen and T. Volansky, First Direct Detection Limits on sub-GeV Dark Matter from XENON10, Phys. Rev. Lett. 109 (2012) 021301 [arXiv:1206.2644] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto, T. Volansky and T.-T. Yu, Direct Detection of sub-GeV Dark Matter with Semiconductor Targets, JHEP 05 (2016) 046 [arXiv:1509.01598] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    R. Essig, T. Volansky and T.-T. Yu, New Constraints and Prospects for sub-GeV Dark Matter Scattering off Electrons in Xenon, Phys. Rev. D 96 (2017) 043017 [arXiv:1703.00910] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    J. Kopp, V. Niro, T. Schwetz and J. Zupan, DAMA/LIBRA and leptonically interacting Dark Matter, Phys. Rev. D 80 (2009) 083502 [arXiv:0907.3159] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    J. Khoury and A. Weltman, Chameleon fields: Awaiting surprises for tests of gravity in space, Phys. Rev. Lett. 93 (2004) 171104 [astro-ph/0309300] [INSPIRE].

  21. [21]

    E. Masso and J. Redondo, Evading astrophysical constraints on axion-like particles, JCAP 09 (2005) 015 [hep-ph/0504202] [INSPIRE].

  22. [22]

    E. Masso and J. Redondo, Compatibility of CAST search with axion-like interpretation of PVLAS results, Phys. Rev. Lett. 97 (2006) 151802 [hep-ph/0606163] [INSPIRE].

  23. [23]

    J. Jaeckel, E. Masso, J. Redondo, A. Ringwald and F. Takahashi, The need for purely laboratory-based axion-like particle searches, Phys. Rev. D 75 (2007) 013004 [hep-ph/0610203] [INSPIRE].

  24. [24]

    A.K. Ganguly, P. Jain, S. Mandal and S. Stokes, Self Interacting Dark Matter in the Solar System, Phys. Rev. D 76 (2007) 025026 [hep-ph/0611006] [INSPIRE].

  25. [25]

    J.E. Kim, PVLAS experiment, star cooling and BBN constraints: Possible interpretation with temperature dependent gauge symmetry breaking, Phys. Rev. D 76 (2007) 051701 [arXiv:0704.3310] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    P. Brax, C. van de Bruck and A.-C. Davis, Compatibility of the chameleon-field model with fifth-force experiments, cosmology, and PVLAS and CAST results, Phys. Rev. Lett. 99 (2007) 121103 [hep-ph/0703243] [INSPIRE].

  27. [27]

    J. Redondo, Can the PVLAS particle be compatible with the astrophysical bounds?, Ph.D. Thesis, Barcelona, Autonoma U., (2007) [arXiv:0807.4329] [INSPIRE].

  28. [28]

    R. Essig, J. Kaplan, P. Schuster and N. Toro, On the Origin of Light Dark Matter Species, arXiv:1004.0691 [INSPIRE].

  29. [29]

    P.W. Graham, R. Harnik, S. Rajendran and P. Saraswat, Exothermic Dark Matter, Phys. Rev. D 82 (2010) 063512 [arXiv:1004.0937] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    N. Bernal, X. Chu and J. Pradler, Simply split strongly interacting massive particles, Phys. Rev. D 95 (2017) 115023 [arXiv:1702.04906] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    T. Bringmann and M. Pospelov, Novel direct detection constraints on light dark matter, Phys. Rev. Lett. 122 (2019) 171801 [arXiv:1810.10543] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    Y. Ema, F. Sala and R. Sato, Light Dark Matter at Neutrino Experiments, Phys. Rev. Lett. 122 (2019) 181802 [arXiv:1811.00520] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    C. Cappiello and J.F. Beacom, Strong New Limits on Light Dark Matter from Neutrino Experiments, Phys. Rev. D 100 (2019) 103011 [arXiv:1906.11283] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    K. Bondarenko, A. Boyarsky, T. Bringmann, M. Hufnagel, K. Schmidt-Hoberg and A. Sokolenko, Direct detection and complementary constraints for sub-GeV dark matter, JHEP 03 (2020) 118 [arXiv:1909.08632] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    T. Bringmann, R. Budnik, T. Emken and R. Essig, in progress.

  36. [36]

    DarkSide collaboration, Constraints on Sub-GeV Dark-Matter-Electron Scattering from the DarkSide-50 Experiment, Phys. Rev. Lett. 121 (2018) 111303 [arXiv:1802.06998] [INSPIRE].

  37. [37]

    SENSEI collaboration, Single-electron and single-photon sensitivity with a silicon Skipper CCD, Phys. Rev. Lett. 119 (2017) 131802 [arXiv:1706.00028] [INSPIRE].

  38. [38]

    SENSEI collaboration, SENSEI: Direct-Detection Constraints on Sub-GeV Dark Matter from a Shallow Underground Run Using a Prototype Skipper-CCD, Phys. Rev. Lett. 122 (2019) 161801 [arXiv:1901.10478] [INSPIRE].

  39. [39]

    SENSEI collaboration, SENSEI: First Direct-Detection Constraints on sub-GeV Dark Matter from a Surface Run, Phys. Rev. Lett. 121 (2018) 061803 [arXiv:1804.00088] [INSPIRE].

  40. [40]

    R.K. Romani et al., Thermal detection of single e-h pairs in a biased silicon crystal detector, Appl. Phys. Lett. 112 (2018) 043501 [arXiv:1710.09335] [INSPIRE].

  41. [41]

    SuperCDMS collaboration, First Dark Matter Constraints from a SuperCDMS Single-Charge Sensitive Detector, Phys. Rev. Lett. 121 (2018) 051301 [Erratum ibid. 122 (2019) 069901] [arXiv:1804.10697] [INSPIRE].

  42. [42]

    H. An, M. Pospelov, J. Pradler and A. Ritz, Directly Detecting MeV-scale Dark Matter via Solar Reflection, Phys. Rev. Lett. 120 (2018) 141801 [Erratum ibid. 121 (2018) 259903] [arXiv:1708.03642] [INSPIRE].

  43. [43]

    T. Emken, C. Kouvaris and N.G. Nielsen, The Sun as a sub-GeV Dark Matter Accelerator, Phys. Rev. D 97 (2018) 063007 [arXiv:1709.06573] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    XENON collaboration, Light Dark Matter Search with Ionization Signals in XENON1T, Phys. Rev. Lett. 123 (2019) 251801 [arXiv:1907.11485] [INSPIRE].

  45. [45]

    SENSEI collaboration, SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper-CCD, Phys. Rev. Lett. 125 (2020) 171802 [arXiv:2004.11378] [INSPIRE].

  46. [46]

    SuperCDMS collaboration, Constraints on low-mass, relic dark matter candidates from a surface-operated SuperCDMS single-charge sensitive detector, Phys. Rev. D 102 (2020) 091101 [arXiv:2005.14067] [INSPIRE].

  47. [47]

    R. Essig, J. Pradler, M. Sholapurkar and T.-T. Yu, Relation between the Migdal Effect and Dark Matter-Electron Scattering in Isolated Atoms and Semiconductors, Phys. Rev. Lett. 124 (2020) 021801 [arXiv:1908.10881] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    M. Battaglieri et al., US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report, in U.S. Cosmic Visions: New Ideas in Dark Matter, (2017) [arXiv:1707.04591] [INSPIRE].

  49. [49]

    P. Gondolo and G.G. Raffelt, Solar neutrino limit on axions and keV-mass bosons, Phys. Rev. D 79 (2009) 107301 [arXiv:0807.2926] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    J. Redondo, Solar axion flux from the axion-electron coupling, JCAP 12 (2013) 008 [arXiv:1310.0823] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    G.G. Raffelt, Axion Constraints From White Dwarf Cooling Times, Phys. Lett. B 166 (1986) 402 [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    M.M. Miller Bertolami, B.E. Melendez, L.G. Althaus and J. Isern, Revisiting the axion bounds from the Galactic white dwarf luminosity function, JCAP 10 (2014) 069 [arXiv:1406.7712] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    M. Giannotti, I.G. Irastorza, J. Redondo, A. Ringwald and K. Saikawa, Stellar Recipes for Axion Hunters, JCAP 10 (2017) 010 [arXiv:1708.02111] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    A.H. Córsico, L.G. Althaus, M.M. Miller Bertolami and S.O. Kepler, Pulsating white dwarfs: new insights, Astron. Astrophys. Rev. 27 (2019) 7 [arXiv:1907.00115] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    G. Raffelt and A. Weiss, Red giant bound on the axion-electron coupling revisited, Phys. Rev. D 51 (1995) 1495 [hep-ph/9410205] [INSPIRE].

  56. [56]

    N. Viaux et al., Neutrino and axion bounds from the globular cluster M5 (NGC 5904), Phys. Rev. Lett. 111 (2013) 231301 [arXiv:1311.1669] [INSPIRE].

  57. [57]

    O. Straniero, I. Domínguez, M. Giannotti and A. Mirizzi, Axion-electron coupling from the RGB tip of Globular Clusters, in 13th Patras Workshop on Axions, WIMPs and WISPs, pp. 172–176, 2018, DOI [arXiv:1802.10357] [INSPIRE].

  58. [58]

    G.G. Raffelt, Astrophysical axion bounds diminished by screening effects, Phys. Rev. D 33 (1986) 897 [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    L. Calibbi, D. Redigolo, R. Ziegler and J. Zupan, Looking forward to Lepton-flavor-violating ALPs, arXiv:2006.04795 [INSPIRE].

  60. [60]

    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP Shines Light on Dark Matter, Phys. Rev. D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    R. Essig, J. Mardon, M. Papucci, T. Volansky and Y.-M. Zhong, Constraining Light Dark Matter with Low-Energy e+ e Colliders, JHEP 11 (2013) 167 [arXiv:1309.5084] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    B.A. Dolgoshein, V.N. Lebedenko and B.U. Rodionov, New Method of Registration of Ionizing-particle Tracks in Condensed Matter, JETP Lett. 11 (1970) 351.

  63. [63]

    G.J. Alner et al., First limits on WIMP nuclear recoil signals in ZEPLIN-II: A two phase xenon detector for dark matter detection, Astropart. Phys. 28 (2007) 287 [astro-ph/0701858] [INSPIRE].

  64. [64]

    XENON collaboration, First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].

  65. [65]

    XENON collaboration, The XENON1T Dark Matter Experiment, Eur. Phys. J. C 77 (2017) 881 [arXiv:1708.07051] [INSPIRE].

  66. [66]

    XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

  67. [67]

    XENON collaboration, First results on the scalar WIMP-pion coupling, using the XENON1T experiment, Phys. Rev. Lett. 122 (2019) 071301 [arXiv:1811.12482] [INSPIRE].

  68. [68]

    XENON collaboration, Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T, Phys. Rev. Lett. 122 (2019) 141301 [arXiv:1902.03234] [INSPIRE].

  69. [69]

    XENON collaboration, XENON1T dark matter data analysis: Signal and background models and statistical inference, Phys. Rev. D 99 (2019) 112009 [arXiv:1902.11297] [INSPIRE].

  70. [70]

    XENON collaboration, Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T, Phys. Rev. Lett. 123 (2019) 241803 [arXiv:1907.12771] [INSPIRE].

  71. [71]

    XENON collaboration, Energy resolution and linearity of XENON1T in the MeV energy range, Eur. Phys. J. C 80 (2020) 785 [arXiv:2003.03825] [INSPIRE].

  72. [72]

    M. Szydagis et al., NEST: A Comprehensive Model for Scintillation Yield in Liquid Xenon, 2011 JINST 6 P10002 [arXiv:1106.1613] [INSPIRE].

  73. [73]

    XENON1T collaboration, Search for Axions and Axion-Like Particles with XENON1T, XENON Technical Meeting, May 12–14, 2020, https://indico.cern.ch/event/923834/contributions/3913983/attachments/2064918/3465213/zoomaxion_2606_Galloway.pdf.

  74. [74]

    XENON collaboration, XENON1T Dark Matter Data Analysis: Signal Reconstruction, Calibration and Event Selection, Phys. Rev. D 100 (2019) 052014 [arXiv:1906.04717] [INSPIRE].

  75. [75]

    M. Szydagis, C. Levy, G.M. Blockinger, A. Kamaha, N. Parveen and G.R.C. Rischbieter, Investigating the XENON1T low-energy electronic recoil excess using NEST, Phys. Rev. D 103 (2021) 012002 [arXiv:2007.00528] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].

  77. [77]

    A.E. Robinson, XENON1T observes tritium, arXiv:2006.13278 [INSPIRE].

  78. [78]

    O. Vitells and E. Gross, Estimating the significance of a signal in a multi-dimensional search, Astropart. Phys. 35 (2011) 230 [arXiv:1105.4355] [INSPIRE].

    ADS  Article  Google Scholar 

  79. [79]

    S. Dimopoulos, J.A. Frieman, B.W. Lynn and G.D. Starkman, Axiorecombination: A New Mechanism for Stellar Axion Production, Phys. Lett. B 179 (1986) 223 [INSPIRE].

    ADS  Article  Google Scholar 

  80. [80]

    B.L. Henke, E.M. Gullikson and J.C. Davis, X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 5030, 000 eV, Z = 192, Atom. Data Nucl. Data Tabl. 54 (1993) 181.

  81. [81]

    K. Nakayama, F. Takahashi and T.T. Yanagida, Anomaly-free flavor models for Nambu-Goldstone bosons and the 3.5keV X-ray line signal, Phys. Lett. B 734 (2014) 178 [arXiv:1403.7390] [INSPIRE].

  82. [82]

    S. Chang and K. Choi, Hadronic axion window and the big bang nucleosynthesis, Phys. Lett. B 316 (1993) 51 [hep-ph/9306216] [INSPIRE].

  83. [83]

    G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP 01 (2016) 034 [arXiv:1511.02867] [INSPIRE].

    Article  Google Scholar 

  84. [84]

    A.R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [INSPIRE].

    Google Scholar 

  85. [85]

    M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].

    ADS  Article  Google Scholar 

  86. [86]

    J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].

    ADS  Article  Google Scholar 

  87. [87]

    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  88. [88]

    N. Craig, A. Hook and S. Kasko, The Photophobic ALP, JHEP 09 (2018) 028 [arXiv:1805.06538] [INSPIRE].

    ADS  Article  Google Scholar 

  89. [89]

    A. Ibarra, E. Molinaro and S.T. Petcov, Low Energy Signatures of the TeV Scale See-Saw Mechanism, Phys. Rev. D 84 (2011) 013005 [arXiv:1103.6217] [INSPIRE].

    ADS  Article  Google Scholar 

  90. [90]

    J. Heeck and H.H. Patel, Majoron at two loops, Phys. Rev. D 100 (2019) 095015 [arXiv:1909.02029] [INSPIRE].

    ADS  Article  Google Scholar 

  91. [91]

    PandaX collaboration, Limits on Axion Couplings from the First 80 Days of Data of the PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181806 [arXiv:1707.07921] [INSPIRE].

  92. [92]

    A. Boyarsky, J.W. den Herder, A. Neronov and O. Ruchayskiy, Search for the light dark matter with an X-ray spectrometer, Astropart. Phys. 28 (2007) 303 [astro-ph/0612219] [INSPIRE].

  93. [93]

    XQC collaboration, Searching for keV Sterile Neutrino Dark Matter with X-ray Microcalorimeter Sounding Rockets, Astrophys. J. 814 (2015) 82 [arXiv:1506.05519] [INSPIRE].

  94. [94]

    R. Hill, K.W. Masui and D. Scott, The Spectrum of the Universe, Appl. Spectrosc. 72 (2018) 663 [arXiv:1802.03694] [INSPIRE].

    ADS  Article  Google Scholar 

  95. [95]

    P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, WISPy Cold Dark Matter, JCAP 06 (2012) 013 [arXiv:1201.5902] [INSPIRE].

    ADS  Article  Google Scholar 

  96. [96]

    D. Barret et al., Athena+: The first Deep Universe X-ray Observatory, arXiv:1310.3814 [INSPIRE].

  97. [97]

    A. Caputo, M. Regis and M. Taoso, Searching for Sterile Neutrino with X-ray Intensity Mapping, JCAP 03 (2020) 001 [arXiv:1911.09120] [INSPIRE].

    ADS  Google Scholar 

  98. [98]

    C. Creque-Sarbinowski and M. Kamionkowski, Searching for Decaying and Annihilating Dark Matter with Line Intensity Mapping, Phys. Rev. D 98 (2018) 063524 [arXiv:1806.11119] [INSPIRE].

    ADS  Article  Google Scholar 

  99. [99]

    J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].

    ADS  Article  Google Scholar 

  100. [100]

    L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].

    ADS  Article  Google Scholar 

  101. [101]

    M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].

    ADS  Article  Google Scholar 

  102. [102]

    A. Hook, G. Marques-Tavares and Y. Tsai, Scalars Gliding through an Expanding Universe, Phys. Rev. Lett. 124 (2020) 211801 [arXiv:1912.08817] [INSPIRE].

    ADS  Article  Google Scholar 

  103. [103]

    A. Arvanitaki, S. Dimopoulos, M. Galanis, L. Lehner, J.O. Thompson and K. Van Tilburg, Large-misalignment mechanism for the formation of compact axion structures: Signatures from the QCD axion to fuzzy dark matter, Phys. Rev. D 101 (2020) 083014 [arXiv:1909.11665] [INSPIRE].

    ADS  Article  Google Scholar 

  104. [104]

    M. Farina, D. Pappadopulo, F. Rompineve and A. Tesi, The photo-philic QCD axion, JHEP 01 (2017) 095 [arXiv:1611.09855] [INSPIRE].

    ADS  Article  Google Scholar 

  105. [105]

    A. Ayala, I. Domínguez, M. Giannotti, A. Mirizzi and O. Straniero, Revisiting the bound on axion-photon coupling from Globular Clusters, Phys. Rev. Lett. 113 (2014) 191302 [arXiv:1406.6053] [INSPIRE].

    ADS  Article  Google Scholar 

  106. [106]

    K. Van Tilburg, Stellar Basins of Gravitationally Bound Particles, arXiv:2006.12431 [INSPIRE].

  107. [107]

    CAST collaboration, New CAST Limit on the Axion-Photon Interaction, Nature Phys. 13 (2017) 584 [arXiv:1705.02290] [INSPIRE].

  108. [108]

    E. Hardy and R. Lasenby, Stellar cooling bounds on new light particles: plasma mixing effects, JHEP 02 (2017) 033 [arXiv:1611.05852] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  109. [109]

    D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs Results from Natural New Physics Perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    ADS  Article  Google Scholar 

  110. [110]

    D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting the 125 GeV Higgs, Nuovo Cim. C 035 (2012) 315 [arXiv:1206.4201] [INSPIRE].

    Google Scholar 

  111. [111]

    J.D. Clarke, R. Foot and R.R. Volkas, Phenomenology of a very light scalar (100 M eV < mh < 10 GeV) mixing with the SM Higgs, JHEP 02 (2014) 123 [arXiv:1310.8042] [INSPIRE].

    ADS  Article  Google Scholar 

  112. [112]

    Z. Chacko and R.K. Mishra, Effective Theory of a Light Dilaton, Phys. Rev. D 87 (2013) 115006 [arXiv:1209.3022] [INSPIRE].

    ADS  Article  Google Scholar 

  113. [113]

    B. Holdom, Two U(1)’s and Epsilon Charge Shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].

    ADS  Article  Google Scholar 

  114. [114]

    H. An, M. Pospelov and J. Pradler, New stellar constraints on dark photons, Phys. Lett. B 725 (2013) 190 [arXiv:1302.3884] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  115. [115]

    G. Alonso-Álvarez, F. Ertas, J. Jaeckel, F. Kahlhoefer and L.J. Thormaehlen, Hidden Photon Dark Matter in the Light of XENON1T and Stellar Cooling, JCAP 11 (2020) 029 [arXiv:2006.11243] [INSPIRE].

    ADS  Article  Google Scholar 

  116. [116]

    M. Giannotti, I. Irastorza, J. Redondo and A. Ringwald, Cool WISPs for stellar cooling excesses, JCAP 05 (2016) 057 [arXiv:1512.08108] [INSPIRE].

    ADS  Article  Google Scholar 

  117. [117]

    G. Alonso-Álvarez, T. Hugle and J. Jaeckel, Misalignment & Co.: (Pseudo-)scalar and vector dark matter with curvature couplings, JCAP 02 (2020) 014 [arXiv:1905.09836] [INSPIRE].

  118. [118]

    P.W. Graham, J. Mardon and S. Rajendran, Vector Dark Matter from Inflationary Fluctuations, Phys. Rev. D 93 (2016) 103520 [arXiv:1504.02102] [INSPIRE].

    ADS  Article  Google Scholar 

  119. [119]

    M. Bastero-Gil, J. Santiago, L. Ubaldi and R. Vega-Morales, Vector dark matter production at the end of inflation, JCAP 04 (2019) 015 [arXiv:1810.07208] [INSPIRE].

    ADS  Article  Google Scholar 

  120. [120]

    P. Agrawal, N. Kitajima, M. Reece, T. Sekiguchi and F. Takahashi, Relic Abundance of Dark Photon Dark Matter, Phys. Lett. B 801 (2020) 135136 [arXiv:1810.07188] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  121. [121]

    R.T. Co, A. Pierce, Z. Zhang and Y. Zhao, Dark Photon Dark Matter Produced by Axion Oscillations, Phys. Rev. D 99 (2019) 075002 [arXiv:1810.07196] [INSPIRE].

    ADS  Article  Google Scholar 

  122. [122]

    J.A. Dror, K. Harigaya and V. Narayan, Parametric Resonance Production of Ultralight Vector Dark Matter, Phys. Rev. D 99 (2019) 035036 [arXiv:1810.07195] [INSPIRE].

    ADS  Article  Google Scholar 

  123. [123]

    J. Khoury, Chameleon Field Theories, Class. Quant. Grav. 30 (2013) 214004 [arXiv:1306.4326] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  124. [124]

    R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

    ADS  Article  Google Scholar 

  125. [125]

    C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

    ADS  Article  Google Scholar 

  126. [126]

    M. Leurer, Y. Nir and N. Seiberg, Mass matrix models, Nucl. Phys. B 398 (1993) 319 [hep-ph/9212278] [INSPIRE].

  127. [127]

    L. Calibbi, Z. Lalak, S. Pokorski and R. Ziegler, The Messenger Sector of SUSY Flavour Models and Radiative Breaking of Flavour Universality, JHEP 06 (2012) 018 [arXiv:1203.1489] [INSPIRE].

    ADS  Article  Google Scholar 

  128. [128]

    K. Hinterbichler and J. Khoury, Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration, Phys. Rev. Lett. 104 (2010) 231301 [arXiv:1001.4525] [INSPIRE].

    ADS  Article  Google Scholar 

  129. [129]

    C. Bunge, J. Barrientos and A. Bunge, Roothaan-Hartree-Fock Ground-State Atomic Wave Functions: Slater-Type Orbital Expansions and Expectation Values for Z = 254, Atom. Data Nucl. Data Tabl. 53 (1993) 113.

    ADS  Article  Google Scholar 

  130. [130]

    B.M. Roberts, V.A. Dzuba, V.V. Flambaum, M. Pospelov and Y.V. Stadnik, Dark matter scattering on electrons: Accurate calculations of atomic excitations and implications for the DAMA signal, Phys. Rev. D 93 (2016) 115037 [arXiv:1604.04559] [INSPIRE].

    ADS  Article  Google Scholar 

  131. [131]

    E. Clementi and D.L. Raimondi, Atomic Screening Constants from SCF Functions, J. Chem. Phys. 38 (1963) 2686.

  132. [132]

    E. Clementi, D.L. Raimondi and W.P. Reinhardt, Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons, J. Chem. Phys. 47 (1967) 1300.

  133. [133]

    R. Balkin, M. Ruhdorfer, E. Salvioni and A. Weiler, Dark matter shifts away from direct detection, JCAP 11 (2018) 050 [arXiv:1809.09106] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  134. [134]

    D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [INSPIRE].

  135. [135]

    D.P. Finkbeiner and N. Weiner, Exciting Dark Matter and the INTEGRAL/SPI 511 keV signal, Phys. Rev. D 76 (2007) 083519 [astro-ph/0702587] [INSPIRE].

  136. [136]

    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].

    ADS  Article  Google Scholar 

  137. [137]

    D.P. Finkbeiner, T.R. Slatyer, N. Weiner and I. Yavin, PAMELA, DAMA, INTEGRAL and Signatures of Metastable Excited WIMPs, JCAP 09 (2009) 037 [arXiv:0903.1037] [INSPIRE].

    ADS  Article  Google Scholar 

  138. [138]

    B. Batell, M. Pospelov and A. Ritz, Direct Detection of Multi-component Secluded WIMPs, Phys. Rev. D 79 (2009) 115019 [arXiv:0903.3396] [INSPIRE].

    ADS  Article  Google Scholar 

  139. [139]

    R.F. Lang and N. Weiner, Peaked Signals from Dark Matter Velocity Structures in Direct Detection Experiments, JCAP 06 (2010) 032 [arXiv:1003.3664] [INSPIRE].

    ADS  Article  Google Scholar 

  140. [140]

    T. Emken, R. Essig, C. Kouvaris and M. Sholapurkar, Direct Detection of Strongly Interacting Sub-GeV Dark Matter via Electron Recoils, JCAP 09 (2019) 070 [arXiv:1905.06348] [INSPIRE].

    ADS  Article  Google Scholar 

  141. [141]

    T. Emken, Dark Matter in the Earth and the Sun — Simulating Underground Scatterings for the Direct Detection of Low-Mass Dark Matter, Ph.D. thesis, Southern Denmark University, CP3-Origins, (2019), arXiv:1906.07541 [INSPIRE].

  142. [142]

    Y.-S. Tsai, Pair Production and Bremsstrahlung of Charged Leptons, Rev. Mod. Phys. 46 (1974) 815 [Erratum ibid. 49 (1977) 421] [INSPIRE].

  143. [143]

    M. Baryakhtar, A. Berlin, H. Liu and N. Weiner, Electromagnetic Signals of Inelastic Dark Matter Scattering, arXiv:2006.13918 [INSPIRE].

  144. [144]

    J. Bramante and N. Song, Electric But Not Eclectic: Thermal Relic Dark Matter for the XENON1T Excess, Phys. Rev. Lett. 125 (2020) 161805 [arXiv:2006.14089] [INSPIRE].

    ADS  Article  Google Scholar 

  145. [145]

    K. Harigaya, Y. Nakai and M. Suzuki, Inelastic Dark Matter Electron Scattering and the XENON1T Excess, Phys. Lett. B 809 (2020) 135729 [arXiv:2006.11938] [INSPIRE].

    Article  Google Scholar 

  146. [146]

    E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, Analyzing the Discovery Potential for Light Dark Matter, Phys. Rev. Lett. 115 (2015) 251301 [arXiv:1505.00011] [INSPIRE].

    ADS  Article  Google Scholar 

  147. [147]

    C. Boehm and P. Fayet, Scalar dark matter candidates, Nucl. Phys. B 683 (2004) 219 [hep-ph/0305261] [INSPIRE].

  148. [148]

    D. Banerjee et al., Dark matter search in missing energy events with NA64, Phys. Rev. Lett. 123 (2019) 121801 [arXiv:1906.00176] [INSPIRE].

  149. [149]

    BaBar collaboration, Search for Invisible Decays of a Dark Photon Produced in e+ e Collisions at BaBar, Phys. Rev. Lett. 119 (2017) 131804 [arXiv:1702.03327] [INSPIRE].

  150. [150]

    P. deNiverville, M. Pospelov and A. Ritz, Observing a light dark matter beam with neutrino experiments, Phys. Rev. D 84 (2011) 075020 [arXiv:1107.4580] [INSPIRE].

  151. [151]

    B. Batell, M. Pospelov and A. Ritz, Exploring Portals to a Hidden Sector Through Fixed Targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].

    ADS  Article  Google Scholar 

  152. [152]

    B. Batell, R. Essig and Z. Surujon, Strong Constraints on Sub-GeV Dark Sectors from SLAC Beam Dump E137, Phys. Rev. Lett. 113 (2014) 171802 [arXiv:1406.2698] [INSPIRE].

    ADS  Article  Google Scholar 

  153. [153]

    A. Berlin, N. Blinov, G. Krnjaic, P. Schuster and N. Toro, Dark Matter, Millicharges, Axion and Scalar Particles, Gauge Bosons, and Other New Physics with LDMX, Phys. Rev. D 99 (2019) 075001 [arXiv:1807.01730] [INSPIRE].

    ADS  Article  Google Scholar 

  154. [154]

    BELLE II, Dark sector searches at BaBar and Belle and outlook for Belle II, Talk by C. Hearty, US Cosmic Visions, March 23, 2017, https://indico.fnal.gov/event/13702/contributions/21158/attachments/13740/17506/Dark_sector_BaBar_Belle_II_Hearty.pdf.

  155. [155]

    CRESST collaboration, First results from the CRESST-III low-mass dark matter program, Phys. Rev. D 100 (2019) 102002 [arXiv:1904.00498] [INSPIRE].

  156. [156]

    CRESST collaboration, Description of CRESST-III Data, arXiv:1905.07335 [INSPIRE].

  157. [157]

    S. Tulin and H.-B. Yu, Dark Matter Self-interactions and Small Scale Structure, Phys. Rept. 730 (2018) 1 [arXiv:1705.02358] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  158. [158]

    M.S. Madhavacheril, N. Sehgal and T.R. Slatyer, Current Dark Matter Annihilation Constraints from CMB and Low-Redshift Data, Phys. Rev. D 89 (2014) 103508 [arXiv:1310.3815] [INSPIRE].

    ADS  Article  Google Scholar 

  159. [159]

    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [INSPIRE].

  160. [160]

    H. Davoudiasl and W.J. Marciano, Running of the U(1) coupling in the dark sector, Phys. Rev. D 92 (2015) 035008 [arXiv:1502.07383] [INSPIRE].

    ADS  Article  Google Scholar 

  161. [161]

    J.L. Feng and J. Smolinsky, Impact of a resonance on thermal targets for invisible dark photon searches, Phys. Rev. D 96 (2017) 095022 [arXiv:1707.03835] [INSPIRE].

    ADS  Article  Google Scholar 

  162. [162]

    K. Schutz and T.R. Slatyer, Self-Scattering for Dark Matter with an Excited State, JCAP 01 (2015) 021 [arXiv:1409.2867] [INSPIRE].

    ADS  Article  Google Scholar 

  163. [163]

    CRESST collaboration, Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground, Eur. Phys. J. C 77 (2017) 637 [arXiv:1707.06749] [INSPIRE].

  164. [164]

    S. Yellin, Finding an upper limit in the presence of unknown background, Phys. Rev. D 66 (2002) 032005 [physics/0203002] [INSPIRE].

  165. [165]

    I. Bloch, R. Essig, D. Redigolo, M. Sholapurkar, T.-T. Yu and T. Volansky, to appear.

  166. [166]

    W. Yin, Highly-boosted dark matter and cutoff for cosmic-ray neutrinos through neutrino portal, EPJ Web Conf. 208 (2019) 04003 [arXiv:1809.08610] [INSPIRE].

    Article  Google Scholar 

  167. [167]

    Super-Kamiokande collaboration, Supernova Relic Neutrino Search at Super-Kamiokande, Phys. Rev. D 85 (2012) 052007 [arXiv:1111.5031] [INSPIRE].

  168. [168]

    S. Knapen, T. Lin and K.M. Zurek, Light Dark Matter: Models and Constraints, Phys. Rev. D 96 (2017) 115021 [arXiv:1709.07882] [INSPIRE].

    ADS  Article  Google Scholar 

  169. [169]

    J.F. Navarro, C.S. Frenk and S.D.M. White, A universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].

  170. [170]

    M.J. Boschini et al., HelMod in the works: from direct observations to the local interstellar spectrum of cosmic-ray electrons, Astrophys. J. 854 (2018) 94 [arXiv:1801.04059] [INSPIRE].

    ADS  Article  Google Scholar 

  171. [171]

    Y.-S. Liu, D. McKeen and G.A. Miller, Electrophobic Scalar Boson and Muonic Puzzles, Phys. Rev. Lett. 117 (2016) 101801 [arXiv:1605.04612] [INSPIRE].

    ADS  Article  Google Scholar 

  172. [172]

    Y.-S. Liu, D. McKeen and G.A. Miller, Validity of the Weizsäcker-Williams approximation and the analysis of beam dump experiments: Production of a new scalar boson, Phys. Rev. D 95 (2017) 036010 [arXiv:1609.06781] [INSPIRE].

    ADS  Article  Google Scholar 

  173. [173]

    BaBar collaboration, Search for a Dark Photon in e+ e Collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].

  174. [174]

    C. Boehm, M.J. Dolan and C. McCabe, A Lower Bound on the Mass of Cold Thermal Dark Matter from Planck, JCAP 08 (2013) 041 [arXiv:1303.6270] [INSPIRE].

    ADS  Article  Google Scholar 

  175. [175]

    F. Takahashi, M. Yamada and W. Yin, XENON1T Excess from Anomaly-Free Axionlike Dark Matter and Its Implications for Stellar Cooling Anomaly, Phys. Rev. Lett. 125 (2020) 161801 [arXiv:2006.10035] [INSPIRE].

    ADS  Article  Google Scholar 

  176. [176]

    K. Kannike, M. Raidal, H. Veermäe, A. Strumia and D. Teresi, Dark Matter and the XENON1T electron recoil excess, Phys. Rev. D 102 (2020) 095002 [arXiv:2006.10735] [INSPIRE].

    ADS  Article  Google Scholar 

  177. [177]

    C. Boehm, D.G. Cerdeno, M. Fairbairn, P.A.N. Machado and A.C. Vincent, Light new physics in XENON1T, Phys. Rev. D 102 (2020) 115013 [arXiv:2006.11250] [INSPIRE].

    ADS  Article  Google Scholar 

  178. [178]

    B. Fornal, P. Sandick, J. Shu, M. Su and Y. Zhao, Boosted Dark Matter Interpretation of the XENON1T Excess, Phys. Rev. Lett. 125 (2020) 161804 [arXiv:2006.11264] [INSPIRE].

    ADS  Article  Google Scholar 

  179. [179]

    L. Su, W. Wang, L. Wu, J.M. Yang and B. Zhu, Atmospheric Dark Matter and Xenon1T Excess, Phys. Rev. D 102 (2020) 115028 [arXiv:2006.11837] [INSPIRE].

    ADS  Article  Google Scholar 

  180. [180]

    A. Bally, S. Jana and A. Trautner, Neutrino self-interactions and XENON1T electron recoil excess, Phys. Rev. Lett. 125 (2020) 161802 [arXiv:2006.11919] [INSPIRE].

    ADS  Article  Google Scholar 

  181. [181]

    M. Du, J. Liang, Z. Liu, V.Q. Tran and Y. Xue, On-shell mediator dark matter models and the Xenon1T anomaly, Chin. Phys. C 45 (2021) 013114 [arXiv:2006.11949] [INSPIRE].

    ADS  Article  Google Scholar 

  182. [182]

    G. Choi, M. Suzuki and T.T. Yanagida, XENON1T Anomaly and its Implication for Decaying Warm Dark Matter, Phys. Lett. B 811 (2020) 135976 [arXiv:2006.12348] [INSPIRE].

    Article  Google Scholar 

  183. [183]

    Y. Chen, M.-Y. Cui, J. Shu, X. Xue, G. Yuan and Q. Yuan, Sun Heated MeV-scale Dark Matter and the XENON1T Electron Recoil Excess, arXiv:2006.12447 [INSPIRE].

  184. [184]

    D. Aristizabal Sierra, V. De Romeri, L.J. Flores and D.K. Papoulias, Light vector mediators facing XENON1T data, Phys. Lett. B 809 (2020) 135681 [arXiv:2006.12457] [INSPIRE].

    Article  Google Scholar 

  185. [185]

    N.F. Bell, J.B. Dent, B. Dutta, S. Ghosh, J. Kumar and J.L. Newstead, Explaining the XENON1T excess with Luminous Dark Matter, Phys. Rev. Lett. 125 (2020) 161803 [arXiv:2006.12461] [INSPIRE].

    ADS  Article  Google Scholar 

  186. [186]

    G. Paz, A.A. Petrov, M. Tammaro and J. Zupan, Shining dark matter in Xenon1T, arXiv:2006.12462 [INSPIRE].

  187. [187]

    L. Di Luzio, M. Fedele, M. Giannotti, F. Mescia and E. Nardi, Solar axions cannot explain the XENON1T excess, Phys. Rev. Lett. 125 (2020) 131804 [arXiv:2006.12487] [INSPIRE].

    ADS  Article  Google Scholar 

  188. [188]

    J. Buch, M.A. Buen-Abad, J. Fan and J.S.C. Leung, Galactic Origin of Relativistic Bosons and XENON1T Excess, JCAP 10 (2020) 051 [arXiv:2006.12488] [INSPIRE].

    ADS  Article  Google Scholar 

  189. [189]

    U.K. Dey, T.N. Maity and T.S. Ray, Prospects of Migdal Effect in the Explanation of XENON1T Electron Recoil Excess, Phys. Lett. B 811 (2020) 135900 [arXiv:2006.12529] [INSPIRE].

    Article  Google Scholar 

  190. [190]

    Q.-H. Cao, R. Ding and Q.-F. Xiang, Exploring for sub-MeV Boosted Dark Matter from Xenon Electron Direct Detection, arXiv:2006.12767 [INSPIRE].

  191. [191]

    A.N. Khan, Can Nonstandard Neutrino Interactions explain the XENON1T spectral excess?, Phys. Lett. B 809 (2020) 135782 [arXiv:2006.12887] [INSPIRE].

    Article  Google Scholar 

  192. [192]

    K. Nakayama and Y. Tang, Gravitational Production of Hidden Photon Dark Matter in Light of the XENON1T Excess, Phys. Lett. B 811 (2020) 135977 [arXiv:2006.13159] [INSPIRE].

    Article  Google Scholar 

  193. [193]

    R. Primulando, J. Julio and P. Uttayarat, Collider Constraints on a Dark Matter Interpretation of the XENON1T Excess, Eur. Phys. J. C 80 (2020) 1084 [arXiv:2006.13161] [INSPIRE].

    ADS  Article  Google Scholar 

  194. [194]

    H.M. Lee, Exothermic dark matter for XENON1T excess, JHEP 01 (2021) 019 [arXiv:2006.13183] [INSPIRE].

    ADS  Article  Google Scholar 

  195. [195]

    J. Smirnov and J.F. Beacom, New Freezeout Mechanism for Strongly Interacting Dark Matter, Phys. Rev. Lett. 125 (2020) 131301 [arXiv:2002.04038] [INSPIRE].

Download references

Author information



Corresponding author

Correspondence to Mukul Sholapurkar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2006.14521

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bloch, I.M., Caputo, A., Essig, R. et al. Exploring new physics with O(keV) electron recoils in direct detection experiments. J. High Energ. Phys. 2021, 178 (2021). https://doi.org/10.1007/JHEP01(2021)178

Download citation


  • Beyond Standard Model
  • Cosmology of Theories beyond the SM