Sterile neutrinos and the global reactor antineutrino dataset

Abstract

We present results from global fits to the available reactor antineutrino dataset, as of Fall 2019, to determine the global preference for a fourth, sterile neutrino. We have separately considered experiments that measure the integrated inverse-beta decay (IBD) rate from those that measure the energy spectrum of IBD events at one or more locations. The evidence that we infer from rate measurements varies between ≲ 3σ and negligible depending on the reactor antineutrino flux model employed. Moreover, we find that spectral ratios ostensibly imply ≳ 3σ evidence, consistent with previous work, though these measurements are known to be plagued by issues related to statistical interpretation; these results should therefore be viewed cautiously. The software used is the newly developed GLoBESfit tool set which is based on the publicly available GLoBES framework and will be released as open-source software.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    C.L. Cowan, F. Reines, F.B. Harrison, H.W. Kruse and A.D. McGuire, Detection of the free neutrino: A Confirmation, Science 124 (1956) 103 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    KamLAND collaboration, First results from KamLAND: Evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].

  3. [3]

    Daya Bay collaboration, Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

  4. [4]

    RENO collaboration, Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].

  5. [5]

    Double CHOOZ collaboration, Indication of Reactor \( {\overline{v}}_e \) Disappearance in the Double CHOOZ Experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].

  6. [6]

    R.E. Carter, F. Reines, J.J. Wagner and M.E. Wyman, Free anti-neutrino absorption cross-section. 2: Expected cross-section from measurements of fission fragment electron spectrum, Phys. Rev. 113 (1959) 280 [INSPIRE].

  7. [7]

    G. Mention et al., The Reactor Antineutrino Anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].

  8. [8]

    T. Mueller et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].

  9. [9]

    P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617 [Erratum ibid. 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].

  10. [10]

    K.N. Abazajian et al., Light Sterile Neutrinos: A White Paper, arXiv:1204.5379 [INSPIRE].

  11. [11]

    A.C. Hayes and P. Vogel, Reactor Neutrino Spectra, Ann. Rev. Nucl. Part. Sci. 66 (2016) 219 [arXiv:1605.02047] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    M. Dentler et al., Updated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile Neutrinos, JHEP 08 (2018) 010 [arXiv:1803.10661] [INSPIRE].

  13. [13]

    S. Gariazzo, C. Giunti, M. Laveder and Y.F. Li, Updated Global 3+1 Analysis of Short-BaseLine Neutrino Oscillations, JHEP 06 (2017) 135 [arXiv:1703.00860] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    LSND collaboration, Evidence for neutrino oscillations from the observation of \( {\overline{v}}_e \) appearance in a \( {\overline{v}}_{\mu } \) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].

  15. [15]

    MiniBooNE collaboration, Improved Search for \( {\overline{v}}_{\mu } \) \( {\overline{v}}_e \) Oscillations in the MiniBooNE Experiment, Phys. Rev. Lett. 110 (2013) 161801 [arXiv:1303.2588] [INSPIRE].

  16. [16]

    A. Diaz, C.A. Argüelles, G.H. Collin, J.M. Conrad and M.H. Shaevitz, Where Are We With Light Sterile Neutrinos?, Phys. Rept. 884 (2020) 1 [arXiv:1906.00045] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    M. Estienne et al., Updated Summation Model: An Improved Agreement with the Daya Bay Antineutrino Fluxes, Phys. Rev. Lett. 123 (2019) 022502 [arXiv:1904.09358] [INSPIRE].

  18. [18]

    L. Hayen, J. Kostensalo, N. Severijns and J. Suhonen, First-forbidden transitions in the reactor anomaly, Phys. Rev. C 100 (2019) 054323 [arXiv:1908.08302] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].

  20. [20]

    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].

  21. [21]

    J.M. Berryman and P. Huber, Reevaluating Reactor Antineutrino Anomalies with Updated Flux Predictions, Phys. Rev. D 101 (2020) 015008 [arXiv:1909.09267] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    RENO collaboration, Observation of Energy and Baseline Dependent Reactor Antineutrino Disappearance in the RENO Experiment, Phys. Rev. Lett. 116 (2016) 211801 [arXiv:1511.05849] [INSPIRE].

  23. [23]

    Daya Bay collaboration, Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay, Phys. Rev. Lett. 116 (2016) 061801 [Erratum ibid. 118 (2017) 099902] [arXiv:1508.04233] [INSPIRE].

  24. [24]

    Double CHOOZ collaboration, Measurement of θ13 in Double CHOOZ using neutron captures on hydrogen with novel background rejection techniques, JHEP 01 (2016) 163 [arXiv:1510.08937] [INSPIRE].

  25. [25]

    F. Von Feilitzsch, A.A. Hahn and K. Schreckenbach, Experimental beta-spectra from 239 Pu and 235 U thermal neutron fission products and their correlated antineutrino spectra, Phys. Lett. B 118 (1982) 162 [INSPIRE].

  26. [26]

    K. Schreckenbach, G. Colvin, W. Gelletly and F. Von Feilitzsch, Determination of the antineutrino spectrum from 235 U thermal neutron fission products up to 9.5 MeV, Phys. Lett. B 160 (1985) 325 [INSPIRE].

  27. [27]

    A.A. Hahn, K. Schreckenbach, G. Colvin, B. Krusche, W. Gelletly and F. Von Feilitzsch, Anti-neutrino Spectra From 241 Pu and 239 Pu Thermal Neutron Fission Products, Phys. Lett. B 218 (1989) 365 [INSPIRE].

  28. [28]

    Daya Bay collaboration, Extraction of the 235 U and 239 Pu Antineutrino Spectra at Daya Bay, Phys. Rev. Lett. 123 (2019) 111801 [arXiv:1904.07812] [INSPIRE].

  29. [29]

    PROSPECT collaboration, Measurement of the Antineutrino Spectrum from 235 U Fission at HFIR with PROSPECT, Phys. Rev. Lett. 122 (2019) 251801 [arXiv:1812.10877] [INSPIRE].

  30. [30]

    P. Vogel and J.F. Beacom, Angular distribution of neutron inverse beta decay \( {\overline{v}}_e \) + p → e+ + n, Phys. Rev. D 60 (1999) 053003 [hep-ph/9903554] [INSPIRE].

  31. [31]

    M. Fallot, private communication.

  32. [32]

    C. Giunti, Precise determination of the 235 U reactor antineutrino cross section per fission, Phys. Lett. B 764 (2017) 145 [arXiv:1608.04096] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    Y. Declais et al., Study of reactor anti-neutrino interaction with proton at Bugey nuclear power plant, Phys. Lett. B 338 (1994) 383 [INSPIRE].

  34. [34]

    A.A. Kuvshinnikov, L.A. Mikaelyan, S.V. Nikolaev, M.D. Skorokhvatov and A.V. Etenko, Measuring the \( {\overline{v}}_e \) + p → n + e+ cross-section and beta decay axial constant in a new experiment at Rovno NPP reactor (In Russian), JETP Lett. 54 (1991) 253 [Sov.J.Nucl.Phys. 52 (1990) 300] [INSPIRE].

  35. [35]

    Y. Declais et al., Search for neutrino oscillations at 15-meters, 40-meters, and 95-meters from a nuclear power reactor at Bugey, Nucl. Phys. B 434 (1995) 503 [INSPIRE].

  36. [36]

    CALTECH-SIN-TUM collaboration, Neutrino Oscillation Experiments at the Gosgen Nuclear Power Reactor, Phys. Rev. D 34 (1986) 2621 [INSPIRE].

  37. [37]

    H. Kwon et al., Search for Neutrino Oscillations at a Fission Reactor, Phys. Rev. D 24 (1981) 1097 [INSPIRE].

  38. [38]

    A. Hoummada, S. Lazrak Mikou, M. Avenier, G. Bagieu, J. F. Cavaignac and Dy. Holm Koan, Neutrino oscillations I.L.L. experiment reanalysis, Appl. Radiat. Isot. 46 (1995) 449.

  39. [39]

    G.S. Vidyakin et al., Detection of Anti-neutrinos in the Flux From Two Reactors, Sov. Phys. JETP 66 (1987) 243 [Zh.Eksp.Teor.Fiz. 93 (1987) 424] [INSPIRE].

  40. [40]

    G.S. Vidyakin et al., Limitations on the characteristics of neutrino oscillations, JETP Lett. 59 (1994) 390 [Pisma Zh.Eksp.Teor.Fiz. 59 (1994) 364] [INSPIRE].

  41. [41]

    Y. Kozlov et al., Anti-neutrino deuteron experiment at Krasnoyarsk, Phys. Atom. Nucl. 63 (2000) 1016 [hep-ex/9912047] [Yad.Fiz. 63 (2000) 1091] [INSPIRE].

  42. [42]

    Z.D. Greenwood et al., Results of a two position reactor neutrino oscillation experiment, Phys. Rev. D 53 (1996) 6054 [INSPIRE].

  43. [43]

    A.I. Afonin, S.N. Ketov, V.I. Kopeikin, L.A. Mikaelyan, M.D. Skorokhvatov and S.V. Tolokonnikov, A Study of the Reaction \( {\overline{v}}_e \) + P → e+ + N on a Nuclear Reactor, Sov. Phys. JETP 67 (1988) 213 [Zh.Eksp.Teor.Fiz. 94N2 (1988) 1] [INSPIRE].

  44. [44]

    V.I. Kopeikin, Flux and spectrum of reactor antineutrinos, Phys. Atom. Nucl. 75 (2012) 143 [Yad.Fiz. 75N2 (2012) 165] [INSPIRE].

  45. [45]

    NUCIFER collaboration, Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector, Phys. Rev. D 93 (2016) 112006 [arXiv:1509.05610] [INSPIRE].

  46. [46]

    I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ23, δCP, and the mass ordering, JHEP 01 (2019) 106 [arXiv:1811.05487] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    F. Boehm et al., Final results from the Palo Verde neutrino oscillation experiment, Phys. Rev. D 64 (2001) 112001 [hep-ex/0107009] [INSPIRE].

  48. [48]

    L.H. Miller, The Palo Verde neutrino oscillation experiment, Ph.D. thesis, Phys. Dept., Stanford University (2001), http://wwwlib.umi.com/dissertations/fullcit?p3000068.

  49. [49]

    G. Gratta, private communication.

  50. [50]

    C. Zhang, X. Qian and P. Vogel, Reactor Antineutrino Anomaly with known θ13, Phys. Rev. D 87 (2013) 073018 [arXiv:1303.0900] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    Double CHOOZ collaboration, Improved measurements of the neutrino mixing angle θ13 with the Double CHOOZ detector, JHEP 10 (2014) 086 [Erratum ibid. 02 (2015) 074] [arXiv:1406.7763] [INSPIRE].

  52. [52]

    Double CHOOZ collaboration, Double CHOOZ θ13 measurement via total neutron capture detection, Nature Phys. 16 (2020) 558 [arXiv:1901.09445] [INSPIRE].

  53. [53]

    CHOOZ collaboration, Search for neutrino oscillations on a long baseline at the CHOOZ nuclear power station, Eur. Phys. J. C 27 (2003) 331 [hep-ex/0301017] [INSPIRE].

  54. [54]

    Daya Bay collaboration, Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay, Chin. Phys. C 41 (2017) 013002 [arXiv:1607.05378] [INSPIRE].

  55. [55]

    Daya Bay collaboration, Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment, Phys. Rev. D 95 (2017) 072006 [arXiv:1610.04802] [INSPIRE].

  56. [56]

    Daya Bay collaboration, Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay, Phys. Rev. Lett. 118 (2017) 251801 [arXiv:1704.01082] [INSPIRE].

  57. [57]

    Daya Bay collaboration, Improved Measurement of the Reactor Antineutrino Flux at Daya Bay, Phys. Rev. D 100 (2019) 052004 [arXiv:1808.10836] [INSPIRE].

  58. [58]

    C. Giunti, Y.F. Li, B.R. Littlejohn and P.T. Surukuchi, Diagnosing the Reactor Antineutrino Anomaly with Global Antineutrino Flux Data, Phys. Rev. D 99 (2019) 073005 [arXiv:1901.01807] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    S.-B. Kim, private communication.

  60. [60]

    RENO collaboration, Fuel-composition dependent reactor antineutrino yield at RENO, Phys. Rev. Lett. 122 (2019) 232501 [arXiv:1806.00574] [INSPIRE].

  61. [61]

    RENO collaboration, Measurement of Reactor Antineutrino Oscillation Amplitude and Frequency at RENO, Phys. Rev. Lett. 121 (2018) 201801 [arXiv:1806.00248] [INSPIRE].

  62. [62]

    A.C. Hayes, J.L. Friar, G.T. Garvey, G. Jungman and G. Jonkmans, Systematic Uncertainties in the Analysis of the Reactor Neutrino Anomaly, Phys. Rev. Lett. 112 (2014) 202501 [arXiv:1309.4146] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    B. Marsh et al., Characterization of the shape-staggering effect in mercury nuclei, Nature Phys. 14 (2018) 1163.

    ADS  Article  Google Scholar 

  64. [64]

    X. Mougeot, Reliability of usual assumptions in the calculation of β and ν spectra, Phys. Rev. C 91 (2015) 055504 [Erratum ibid. 92 (2015) 059902] [INSPIRE].

  65. [65]

    C. Giunti, X.P. Ji, M. Laveder, Y.F. Li and B.R. Littlejohn, Reactor Fuel Fraction Information on the Antineutrino Anomaly, JHEP 10 (2017) 143 [arXiv:1708.01133] [INSPIRE].

    ADS  Article  Google Scholar 

  66. [66]

    Y. Gebre, B.R. Littlejohn and P.T. Surukuchi, Prospects for Improved Understanding of Isotopic Reactor Antineutrino Fluxes, Phys. Rev. D 97 (2018) 013003 [arXiv:1709.10051] [INSPIRE].

    ADS  Article  Google Scholar 

  67. [67]

    S. Gariazzo, C. Giunti, M. Laveder and Y.F. Li, Model-independent \( {\overline{v}}_e \) short-baseline oscillations from reactor spectral ratios, Phys. Lett. B 782 (2018) 13 [arXiv:1801.06467] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    DANSS collaboration, Search for sterile neutrinos at the DANSS experiment, Phys. Lett. B 787 (2018) 56 [arXiv:1804.04046] [INSPIRE].

  69. [69]

    Daya Bay collaboration, Measurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay, Phys. Rev. Lett. 121 (2018) 241805 [arXiv:1809.02261] [INSPIRE].

  70. [70]

    NEOS collaboration, Sterile Neutrino Search at the NEOS Experiment, Phys. Rev. Lett. 118 (2017) 121802 [arXiv:1610.05134] [INSPIRE].

  71. [71]

    STEREO collaboration, Improved sterile neutrino constraints from the STEREO experiment with 179 days of reactor-on data, Phys. Rev. D 102 (2020) 052002 [arXiv:1912.06582] [INSPIRE].

  72. [72]

    SoLid collaboration, First results of the deployment of a SoLid detector module at the SCK-CEN BR2 reactor, PoS EPS-HEP2015 (2015) 071 [arXiv:1510.07835] [INSPIRE].

  73. [73]

    D. Jacquemain et al., Nuclear Power Reactor Core Melt Accidents: Current State of Knowledge, EDP Sciences (2015) ISBN 2759818358, https://www.edp-open.org/images/stories/books/fulldl/Nuclear_Power_Reactor_Core_Melt_Accidents.pdf.

  74. [74]

    M. Danilov, Search for sterile neutrinos at the DANSS experiment, Solvay Workshop, ULB Bruxelles, December 1, 2017, http://www.solvayinstitutes.be/event/workshop/beyond_2018/slides/Danilov.pdf.

  75. [75]

    P. Huber, NEOS Data and the Origin of the 5 MeV Bump in the Reactor Antineutrino Spectrum, Phys. Rev. Lett. 118 (2017) 042502 [arXiv:1609.03910] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    M. Dentler, A. Hernández-Cabezudo, J. Kopp, M. Maltoni and T. Schwetz, Sterile neutrinos or flux uncertainties? — Status of the reactor anti-neutrino anomaly, JHEP 11 (2017) 099 [arXiv:1709.04294] [INSPIRE].

    ADS  Article  Google Scholar 

  77. [77]

    S.J. Parke and R. Zukanovich-Funchal, Comment on Daya Bay’s Definition and Use of \( \Delta {m}_{ee}^2 \), arXiv:1903.00148 [INSPIRE].

  78. [78]

    Day Bay collaboration, Response to Comment on Daya Bay’s definition and use of \( \Delta \left({m}_{ee}^2\right) \), arXiv:1905.03840 [INSPIRE].

  79. [79]

    M. Maltoni and T. Schwetz, Testing the statistical compatibility of independent data sets, Phys. Rev. D 68 (2003) 033020 [hep-ph/0304176] [INSPIRE].

  80. [80]

    J.M. Berryman, V. Brdar and P. Huber, Particle physics origin of the 5 MeV bump in the reactor antineutrino spectrum?, Phys. Rev. D 99 (2019) 055045 [arXiv:1803.08506] [INSPIRE].

    ADS  Article  Google Scholar 

  81. [81]

    G. Mention, M. Vivier, J. Gaffiot, T. Lasserre, A. Letourneau and T. Materna, Reactor antineutrino shoulder explained by energy scale nonlinearities?, Phys. Lett. B 773 (2017) 307 [arXiv:1705.09434] [INSPIRE].

    ADS  Article  Google Scholar 

  82. [82]

    D. Foreman-Mackey, D.W. Hogg, D. Lang and J. Goodman, emcee: The MCMC Hammer, Publ. Astron. Soc. Pac. 125 (2013) 306 [arXiv:1202.3665] [INSPIRE].

  83. [83]

    NEUTRINO-4 collaboration, First Observation of the Oscillation Effect in the Neutrino-4 Experiment on the Search for the Sterile Neutrino, Pisma Zh. Eksp. Teor. Fiz. 109 (2019) 209 [arXiv:1809.10561] [INSPIRE].

  84. [84]

    A.P. Serebrov, Present status of Neutrino-4 experiment search for sterile neutrino, https://indico.cern.ch/event/833568/contributions/3655173/attachments/1957823/3252790/2-12_China_Serebrov_Neutrino-4.pdf.

  85. [85]

    C. Giunti, Y.F. Li and Y.Y. Zhang, KATRIN bound on 3+1 active-sterile neutrino mixing and the reactor antineutrino anomaly, JHEP 05 (2020) 061 [arXiv:1912.12956] [INSPIRE].

    ADS  Article  Google Scholar 

  86. [86]

    J.M. Berryman, GLoBESfit v1.0.3, https://github.com/JMBerryman/GLoBESfit/releases.

  87. [87]

    J.M. Berryman and P. Huber, GLoBESfit, https://www.globesfit.org/.

  88. [88]

    G.J. Feldman and R.D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].

  89. [89]

    M. Agostini and B. Neumair, Statistical Methods Applied to the Search of Sterile Neutrinos, Eur. Phys. J. C 80 (2020) 750 [arXiv:1906.11854] [INSPIRE].

    ADS  Article  Google Scholar 

  90. [90]

    S.V. Silaeva and V.V. Sinev, Simulation of an experiment on looking for sterile neutrinos at nuclear reactor, arXiv:2001.10752 [INSPIRE].

  91. [91]

    C. Giunti, Statistical Significance of Reactor Antineutrino Active-Sterile Oscillations, Phys. Rev. D 101 (2020) 095025 [arXiv:2004.07577] [INSPIRE].

    ADS  Article  Google Scholar 

  92. [92]

    PROSPECT collaboration, First search for short-baseline neutrino oscillations at HFIR with PROSPECT, Phys. Rev. Lett. 121 (2018) 251802 [arXiv:1806.02784] [INSPIRE].

  93. [93]

    DANSS collaboration, Recent results of the DANSS experiment, PoS EPS-HEP2019 (2020) 401 [arXiv:1911.10140] [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patrick Huber.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2005.01756

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berryman, J.M., Huber, P. Sterile neutrinos and the global reactor antineutrino dataset. J. High Energ. Phys. 2021, 167 (2021). https://doi.org/10.1007/JHEP01(2021)167

Download citation

Keywords

  • Neutrino Physics
  • Beyond Standard Model