An exact construction of codimension two holography

Abstract

Recently, a codimension two holography called wedge holography is proposed as a generalization of AdS/CFT. It is conjectured that a gravitational theory in d + 1 dimensional wedge spacetime is dual to a d − 1 dimensional CFT on the corner of the wedge. In this paper, we give an exact construction of the gravitational solutions for wedge holography from the ones in AdS/CFT. By applying this construction, we prove the equivalence between wedge holography and AdS/CFT for vacuum Einstein gravity, by showing that the classical gravitational action and thus the CFT partition function in large N limit are the same for the two theories. The equivalence to AdS/CFT can be regarded as a “proof” of wedge holography in a certain sense. As an application of this powerful equivalence, we derive easily the holographic Weyl anomaly, holographic Entanglement/Rényi entropy and correlation functions for wedge holography. Besides, we discuss the general solutions of wedge holography and argue that they correspond to the AdS/CFT with suitable matter fields. Interestingly, we notice that the intrinsic Ricci scalar on the brane is always a constant, which depends on the tension. Finally, we generalize the discussions to dS/CFT and flat space holography. Remarkably, we find that AdS/CFT, dS/CFT and flat space holography can be unified in the framework of codimension two holography in asymptotically AdS. Different dualities are distinguished by different types of spacetimes on the brane.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc. C 930308 (1993) 284 [gr-qc/9310026] [INSPIRE].

  2. [2]

    L. Susskind, The World as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  3. [3]

    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].

  4. [4]

    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  5. [5]

    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  6. [6]

    T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  7. [7]

    J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114 (2005) 1083 [hep-th/0507073] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  9. [9]

    M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy, in Lecture Notes in Physics 931, Springer (2017) [arXiv:1609.01287] [INSPIRE].

  10. [10]

    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    M. Alishahiha, A. Karch, E. Silverstein and D. Tong, The dS/dS correspondence, AIP Conf. Proc. 743 (2004) 393 [hep-th/0407125] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    M. Alishahiha, A. Karch and E. Silverstein, Hologravity, JHEP 06 (2005) 028 [hep-th/0504056] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    X. Dong, E. Silverstein and G. Torroba, de Sitter Holography and Entanglement Entropy, JHEP 07 (2018) 050 [arXiv:1804.08623] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  16. [16]

    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    A. Castro, A. Maloney and A. Strominger, Hidden Conformal Symmetry of the Kerr Black Hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    A. Bagchi, Correspondence between Asymptotically Flat Spacetimes and Nonrelativistic Conformal Field Theories, Phys. Rev. Lett. 105 (2010) 171601 [arXiv:1006.3354] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    A. Bagchi, R. Basu, A. Kakkar and A. Mehra, Flat Holography: Aspects of the dual field theory, JHEP 12 (2016) 147 [arXiv:1609.06203] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  20. [20]

    L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  21. [21]

    L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  22. [22]

    A. Karch and L. Randall, Locally localized gravity, JHEP 05 (2001) 008 [hep-th/0011156] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  23. [23]

    M. Miyaji and T. Takayanagi, Surface/State Correspondence as a Generalized Holography, Prog. Theor. Exp. Phys. 2015 (2015) 073B03 [arXiv:1503.03542] [INSPIRE].

    MATH  Article  Google Scholar 

  24. [24]

    T. Takayanagi, Holographic Spacetimes as Quantum Circuits of Path-Integrations, JHEP 12 (2018) 048 [arXiv:1808.09072] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  25. [25]

    T. Takayanagi, Holographic Dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602 [arXiv:1105.5165] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043 [arXiv:1108.5152] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  27. [27]

    M. Nozaki, T. Takayanagi and T. Ugajin, Central Charges for BCFTs and Holography, JHEP 06 (2012) 066 [arXiv:1205.1573] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  28. [28]

    R.-X. Miao, Holographic BCFT with Dirichlet Boundary Condition, JHEP 02 (2019) 025 [arXiv:1806.10777] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  29. [29]

    R.-X. Miao, C.-S. Chu and W.-Z. Guo, New proposal for a holographic boundary conformal field theory, Phys. Rev. D 96 (2017) 046005 [arXiv:1701.04275] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    C.-S. Chu, R.-X. Miao and W.-Z. Guo, On New Proposal for Holographic BCFT, JHEP 04 (2017) 089 [arXiv:1701.07202] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  31. [31]

    I. Akal, Y. Kusuki, T. Takayanagi and Z. Wei, Codimension-two holography for wedges, Phys. Rev. D 102 (2020) 126007 [arXiv:2007.06800] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    R. Bousso and E. Wildenhain, Gravity/ensemble duality, Phys. Rev. D 102 (2020) 066005 [arXiv:2006.16289] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    G. Penington, Entanglement Wedge Reconstruction and the Information Paradox, JHEP 09 (2020) 002 [arXiv:1905.08255] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, JHEP 12 (2019) 063 [arXiv:1905.08762] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  35. [35]

    A. Almheiri, R. Mahajan, J.M. Maldacena and Y. Zhao, The Page curve of Hawking radiation from semiclassical geometry, JHEP 03 (2020) 149 [arXiv:1908.10996] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  36. [36]

    M. Rozali, J. Sully, M. Van Raamsdonk, C. Waddell and D. Wakeham, Information radiation in BCFT models of black holes, JHEP 05 (2020) 004 [arXiv:1910.12836] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  37. [37]

    H.Z. Chen, Z. Fisher, J. Hernandez, R.C. Myers and S.-M. Ruan, Information Flow in Black Hole Evaporation, JHEP 03 (2020) 152 [arXiv:1911.03402] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  38. [38]

    A. Almheiri, R. Mahajan and J.E. Santos, Entanglement islands in higher dimensions, SciPost Phys. 9 (2020) 001 [arXiv:1911.09666] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    Y. Kusuki, Y. Suzuki, T. Takayanagi and K. Umemoto, Looking at Shadows of Entanglement Wedges, arXiv:1912.08423 [INSPIRE].

  40. [40]

    V. Balasubramanian, A. Kar, O. Parrikar, G. Sárosi and T. Ugajin, Geometric secret sharing in a model of Hawking radiation, arXiv:2003.05448 [INSPIRE].

  41. [41]

    J. Sully, M. Van Raamsdonk and D. Wakeham, BCFT entanglement entropy at large central charge and the black hole interior, arXiv:2004.13088 [INSPIRE].

  42. [42]

    H. Geng and A. Karch, Massive islands, JHEP 09 (2020) 121 [arXiv:2006.02438] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. [43]

    H.Z. Chen, R.C. Myers, D. Neuenfeld, I.A. Reyes and J. Sandor, Quantum Extremal Islands Made Easy. Part I. Entanglement on the Brane, JHEP 10 (2020) 166 [arXiv:2006.04851] [INSPIRE].

  44. [44]

    X. Dong, X.-L. Qi, Z. Shangnan and Z. Yang, Effective entropy of quantum fields coupled with gravity, JHEP 10 (2020) 052 [arXiv:2007.02987] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    C. Arias, F. Diaz, R. Olea and P. Sundell, Liouville description of conical defects in dS4, Gibbons-Hawking entropy as modular entropy, and dS3 holography, JHEP 04 (2020) 124 [arXiv:1906.05310] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  46. [46]

    C. Arias, F. Diaz and P. Sundell, de Sitter Space and Entanglement, Class. Quant. Grav. 37 (2020) 015009 [arXiv:1901.04554] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  47. [47]

    H. Geng, Non-local Entanglement and Fast Scrambling in De-Sitter Holography, arXiv:2005.00021 [INSPIRE].

  48. [48]

    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  49. [49]

    I.Y. Park, C.N. Pope and A. Sadrzadeh, AdS brane world Kaluza-Klein reduction, Class. Quant. Grav. 19 (2002) 6237 [hep-th/0110238] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  50. [50]

    C.-S. Chu and R.-X. Miao, Black hole and Island in AdS/BCFT, in preparing.

  51. [51]

    P.-J. Hu and R.-X. Miao, Wedge Holography with Matter Fields, in preparing.

  52. [52]

    V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  53. [53]

    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  54. [54]

    G. Hayward, Gravitational action for space-times with nonsmooth boundaries, Phys. Rev. D 47 (1993) 3275 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  55. [55]

    D. Brill and G. Hayward, Is the gravitational action additive?, Phys. Rev. D 50 (1994) 4914 [gr-qc/9403018] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  56. [56]

    M.J. Duff, Observations on Conformal Anomalies, Nucl. Phys. B 125 (1977) 334 [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    M.J. Duff, Twenty years of the Weyl anomaly, Class. Quant. Grav. 11 (1994) 1387 [hep-th/9308075] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  58. [58]

    S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary dimensions, Phys. Lett. B 309 (1993) 279 [hep-th/9302047] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  59. [59]

    L.-Y. Hung, R.C. Myers and M. Smolkin, On Holographic Entanglement Entropy and Higher Curvature Gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    J.L. Cardy, Is There a c Theorem in Four-Dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  61. [61]

    A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565] [INSPIRE].

  62. [62]

    Z. Komargodski and A. Schwimmer, On Renormalization Group Flows in Four Dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  63. [63]

    R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  64. [64]

    H. Osborn, Derivation of a Four-dimensional c Theorem, Phys. Lett. B 222 (1989) 97 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  65. [65]

    D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  66. [66]

    L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on perturbations of N = 4 superYang-Mills from AdS dynamics, JHEP 12 (1998) 022 [hep-th/9810126] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  67. [67]

    L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, The Supergravity dual of N = 1 superYang-Mills theory, Nucl. Phys. B 569 (2000) 451 [hep-th/9909047] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  68. [68]

    R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  70. [70]

    C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, Diffeomorphisms and holographic anomalies, Class. Quant. Grav. 17 (2000) 1129 [hep-th/9910267] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  71. [71]

    R.-X. Miao, A Note on Holographic Weyl Anomaly and Entanglement Entropy, Class. Quant. Grav. 31 (2014) 065009 [arXiv:1309.0211] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  72. [72]

    X. Dong, The Gravity Dual of Renyi Entropy, Nature Commun. 7 (2016) 12472 [arXiv:1601.06788] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  74. [74]

    L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic Calculations of Renyi Entropy, JHEP 12 (2011) 047 [arXiv:1110.1084] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  75. [75]

    X. Dong, Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories, Phys. Rev. Lett. 116 (2016) 251602 [arXiv:1602.08493] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  76. [76]

    L. Bianchi, S. Chapman, X. Dong, D.A. Galante, M. Meineri and R.C. Myers, Shape dependence of holographic Rényi entropy in general dimensions, JHEP 11 (2016) 180 [arXiv:1607.07418] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  77. [77]

    C.-S. Chu and R.-X. Miao, Universality in the shape dependence of holographic Rényi entropy for general higher derivative gravity, JHEP 12 (2016) 036 [arXiv:1608.00328] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  78. [78]

    H. Liu and A.A. Tseytlin, D = 4 superYang-Mills, D = 5 gauged supergravity, and D = 4 conformal supergravity, Nucl. Phys. B 533 (1998) 88 [hep-th/9804083] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  79. [79]

    R.-X. Miao and C.-S. Chu, Universality for Shape Dependence of Casimir Effects from Weyl Anomaly, JHEP 03 (2018) 046 [arXiv:1706.09652] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  80. [80]

    D.V. Vassilevich, Heat kernel expansion: User’s manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  81. [81]

    C.-S. Chu and R.-X. Miao, Weyl Anomaly induced Fermi Condensation and Holography, JHEP 08 (2020) 134 [arXiv:2005.12975] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rong-Xin Miao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2009.06263

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miao, RX. An exact construction of codimension two holography. J. High Energ. Phys. 2021, 150 (2021). https://doi.org/10.1007/JHEP01(2021)150

Download citation

Keywords

  • AdS-CFT Correspondence
  • Classical Theories of Gravity