Refinement and modularity of immortal dyons

Abstract

Extending recent results in \( \mathcal{N} \) = 2 string compactifications, we propose that the holomorphic anomaly equation satisfied by the modular completions of the generating functions of refined BPS indices has a universal structure independent of the number \( \mathcal{N} \) of supersymmetries. We show that this equation allows to recover all known results about modularity (under SL(2, ℤ) duality group) of BPS states in \( \mathcal{N} \) = 4 string theory. In particular, we reproduce the holomorphic anomaly characterizing the mock modular behavior of quarter-BPS dyons and generalize it to the case of non-trivial torsion invariant.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Zwegers, Mock theta functions, Ph.D. dissertation, Utrecht University, Utrecht The Netherlands (2002).

    Google Scholar 

  2. [2]

    D. Zagier, Ramanujan’s mock theta functions and their applications (after Zwegers and Ono-Bringmann), Astérisque 326 (2009).

  3. [3]

    A. Dabholkar, S. Murthy and D. Zagier, Quantum black holes, wall crossing, and mock modular forms, arXiv:1208.4074 [INSPIRE].

  4. [4]

    S. Alexandrov, S. Banerjee, J. Manschot and B. Pioline, Multiple D3-instantons and mock modular forms I, Commun. Math. Phys. 353 (2017) 379 [arXiv:1605.05945] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  5. [5]

    S. Alexandrov and B. Pioline, Black holes and higher depth mock modular forms, Commun. Math. Phys. 374 (2019) 549 [arXiv:1808.08479] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  6. [6]

    C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  7. [7]

    A. Dabholkar, P. Putrov and E. Witten, Duality and mock modularity, SciPost Phys. 9 (2020) 072 [arXiv:2004.14387] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    G. Korpas and J. Manschot, Donaldson-Witten theory and indefinite theta functions, JHEP 11 (2017) 083 [arXiv:1707.06235] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  9. [9]

    G. Korpas, J. Manschot, G.W. Moore and I. Nidaiev, Mocking the u-plane integral, arXiv:1910.13410 [INSPIRE].

  10. [10]

    M.C.N. Cheng and J.F.R. Duncan, On Rademacher sums, the largest Mathieu group, and the holographic modularity of Moonshine, Commun. Num. Theor. Phys. 6 (2012) 697 [arXiv:1110.3859] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    S. Alexandrov, J. Manschot and B. Pioline, S-duality and refined BPS indices, Commun. Math. Phys. 380 (2020) 755 [arXiv:1910.03098] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  12. [12]

    M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435 [INSPIRE].

  13. [13]

    T. Dimofte and S. Gukov, Refined, motivic, and quantum, Lett. Math. Phys. 91 (2010) 1 [arXiv:0904.1420] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  14. [14]

    J. Manschot, B. Pioline and A. Sen, Wall crossing from Boltzmann black hole halos, JHEP 07 (2011) 059 [arXiv:1011.1258] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  15. [15]

    S. Alexandrov, Vafa-Witten invariants from modular anomaly, Commun. Num. Theor. Phys. 15 (2021) 149 [arXiv:2005.03680] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  16. [16]

    S. Alexandrov, Rank N Vafa-Witten invariants, modularity and blow-up, arXiv:2006.10074 [INSPIRE].

  17. [17]

    R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Counting dyons in N = 4 string theory, Nucl. Phys. B 484 (1997) 543 [hep-th/9607026] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  18. [18]

    E. Kiritsis, Introduction to nonperturbative string theory, AIP Conf. Proc. 419 (1998) 265 [hep-th/9708130] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  20. [20]

    A. Dabholkar, D. Gaiotto and S. Nampuri, Comments on the spectrum of CHL dyons, JHEP 01 (2008) 023 [hep-th/0702150] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    S. Banerjee and A. Sen, Duality orbits, dyon spectrum and gauge theory limit of heterotic string theory on T 6, JHEP 03 (2008) 022 [arXiv:0712.0043] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    S. Banerjee and A. Sen, S-duality action on discrete T-duality invariants, JHEP 04 (2008) 012 [arXiv:0801.0149] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  23. [23]

    A. Dabholkar and J.A. Harvey, Nonrenormalization of the superstring tension, Phys. Rev. Lett. 63 (1989) 478 [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    D. Shih, A. Strominger and X. Yin, Recounting Dyons in N = 4 string theory, JHEP 10 (2006) 087 [hep-th/0505094] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  25. [25]

    D. Gaiotto, A. Strominger and X. Yin, New connections between 4D and 5 − D black holes, JHEP 02 (2006) 024 [hep-th/0503217] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    A. Dabholkar, J. Gomes and S. Murthy, Counting all dyons in N = 4 string theory, JHEP 05 (2011) 059 [arXiv:0803.2692] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  27. [27]

    A. Dabholkar, M. Guica, S. Murthy and S. Nampuri, No entropy enigmas for N = 4 dyons, JHEP 06 (2010) 007 [arXiv:0903.2481] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  28. [28]

    A. Sen, Walls of marginal stability and Dyon spectrum in N = 4 supersymmetric string theories, JHEP 05 (2007) 039 [hep-th/0702141] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    M.C.N. Cheng and E. Verlinde, Dying dyons don’t count, JHEP 09 (2007) 070 [arXiv:0706.2363] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  30. [30]

    A. Dabholkar, F. Denef, G.W. Moore and B. Pioline, Precision counting of small black holes, JHEP 10 (2005) 096 [hep-th/0507014] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. [31]

    S. Alexandrov, B. Pioline, F. Saueressig and S. Vandoren, D-instantons and twistors, JHEP 03 (2009) 044 [arXiv:0812.4219] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    S. Alexandrov, D-instantons and twistors: Some exact results, J. Phys. A 42 (2009) 335402 [arXiv:0902.2761] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  33. [33]

    S. Alexandrov, Twistor approach to string compactifications: a review, Phys. Rept. 522 (2013) 1 [arXiv:1111.2892] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    S. Alexandrov, D. Persson and B. Pioline, Fivebrane instantons, topological wave functions and hypermultiplet moduli spaces, JHEP 03 (2011) 111 [arXiv:1010.5792] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  35. [35]

    S. Alexandrov and S. Banerjee, Fivebrane instantons in Calabi-Yau compactifications, Phys. Rev. D 90 (2014) 041902 [arXiv:1403.1265] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    S. Alexandrov and S. Banerjee, Dualities and fivebrane instantons, JHEP 11 (2014) 040 [arXiv:1405.0291] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  37. [37]

    F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  38. [38]

    S. Alexandrov and B. Pioline, Attractor flow trees, BPS indices and quivers, Adv. Theor. Math. Phys. 23 (2019) 627 [arXiv:1804.06928] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  39. [39]

    F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, JHEP 11 (2011) 129 [hep-th/0702146] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  40. [40]

    I. Bena, M. Berkooz, J. de Boer, S. El-Showk and D. Van den Bleeken, Scaling BPS solutions and pure-Higgs states, JHEP 11 (2012) 171 [arXiv:1205.5023] [INSPIRE].

  41. [41]

    S. Alexandrov, S. Banerjee, J. Manschot and B. Pioline, Indefinite theta series and generalized error functions, Selecta Math. 24 (2018) 3927 [arXiv:1606.05495] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  42. [42]

    C. Nazaroglu, r-tuple error functions and indefinite theta series of higher-depth, Commun. Num. Theor. Phys. 12 (2018) 581 [arXiv:1609.01224] [INSPIRE].

  43. [43]

    M. Cvetič and C.M. Hull, Black holes and U duality, Nucl. Phys. B 480 (1996) 296 [hep-th/9606193] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  44. [44]

    P. Kraus and F. Larsen, Partition functions and elliptic genera from supergravity, JHEP 01 (2007) 002 [hep-th/0607138] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  45. [45]

    S. Chaudhuri, G. Hockney and J.D. Lykken, Maximally supersymmetric string theories in D < 10, Phys. Rev. Lett. 75 (1995) 2264 [hep-th/9505054] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  46. [46]

    A. Dabholkar and D. Gaiotto, Spectrum of CHL dyons from genus-two partition function, JHEP 12 (2007) 087 [hep-th/0612011] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  47. [47]

    G. Bossard, C. Cosnier-Horeau and B. Pioline, Exact effective interactions and 1/4-BPS dyons in heterotic CHL orbifolds, SciPost Phys. 7 (2019) 028 [arXiv:1806.03330] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  48. [48]

    F. Fischbach, A. Klemm and C. Nega, Lost chapters in CHL black holes: untwisted quarter-BPS dyons in the2 model, arXiv:2005.07712 [INSPIRE].

  49. [49]

    G.L. Cardoso, S. Nampuri and M. Rosselló, Arithmetic of decay walls through continued fractions: a new exact dyon counting solution in \( \mathcal{N} \) = 4 CHL models, arXiv:2007.10302 [INSPIRE].

  50. [50]

    D. Shih, A. Strominger and X. Yin, Counting dyons in N = 8 string theory, JHEP 06 (2006) 037 [hep-th/0506151] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. [51]

    B. Pioline, BPS black hole degeneracies and minimal automorphic representations, JHEP 08 (2005) 071 [hep-th/0506228] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. [52]

    A. Sen, N = 8 dyon partition function and walls of marginal stability, JHEP 07 (2008) 118 [arXiv:0803.1014] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. [53]

    A. Sen, U-duality invariant dyon spectrum in type-II on T 6, JHEP 08 (2008) 037 [arXiv:0804.0651] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  54. [54]

    A. Ceresole, R. D’Auria, S. Ferrara and A. Van Proeyen, Duality transformations in supersymmetric Yang-Mills theories coupled to supergravity, Nucl. Phys. B 444 (1995) 92 [hep-th/9502072] [INSPIRE].

  55. [55]

    M. Eichler and D. Zagier, The theory of Jacobi forms, Progress in Mathematics volume 55, Birkhäuser, Boston Inc., U.S.A. (1985).

  56. [56]

    S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) 5412 [hep-th/9508072] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. [57]

    M.-x. Huang, S. Katz and A. Klemm, Topological string on elliptic CY 3-folds and the ring of Jacobi forms, JHEP 10 (2015) 125 [arXiv:1501.04891] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Suresh Nampuri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2009.01172

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, S., Nampuri, S. Refinement and modularity of immortal dyons. J. High Energ. Phys. 2021, 147 (2021). https://doi.org/10.1007/JHEP01(2021)147

Download citation

Keywords

  • Black Holes in String Theory
  • Extended Supersymmetry
  • String Duality
  • Superstrings and Heterotic Strings