A model of interacting dark matter and dark radiation for H0 and σ8 tensions

Abstract

We present a model describing the dark sector (DS) featured by two interactions remaining efficient until late times in the matter-dominated era after recombination: the interaction among dark radiations (DR), and the interaction between a small fraction of dark matter and dark radiation. The dark sector consists of (1) a dominant component cold collisionless DM (DM1), (2) a sub-dominant cold DM (DM2) and (3) a self-interacting DR. When a sufficient amount of DR is ensured and a few percent of the total DM density is contributed by DM2 interacting with DR, this set-up is known to be able to resolve both the Hubble and σ8 tension. In light of this, we propose a scenario which is logically natural and has an intriguing theoretical structure with a hidden unbroken gauge group SU(5)X ⊗ U(1)X. Our model of the dark sector does not introduce any new scalar field, but contains only massless chiral fermions and gauge fields in the ultraviolet (UV) regime. As such, it introduces a new scale (DM2 mass, mDM2) based on the confinement resulting from the strong dynamics of SU(5)X. Both DM2-DR and DR-DR interactions are attributed to an identical long range interaction of U(1)X. We show that our model can address the cosmological tensions when it is characterized by gX = \( \mathcal{O} \)(103)–\( \mathcal{O} \)(102), mDM2 = \( \mathcal{O} \)(1)–\( \mathcal{O} \)(100) GeV and TDS/TSM ≃ 0.3–0.4 where gX is the gauge coupling of U(1)X and TDS(TSM) is a temperature of the DS (Standard Model sector). Our model explains candidates of DM2 and DR, and DM1 can be any kind of CDM.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    B. Moore, T.R. Quinn, F. Governato, J. Stadel and G. Lake, Cold collapse and the core catastrophe, Mon. Not. Roy. Astron. Soc. 310 (1999) 1147 [astro-ph/9903164] [INSPIRE].

  2. [2]

    B. Moore et al., Dark matter substructure within galactic halos, Astrophys. J. Lett. 524 (1999) L19 [astro-ph/9907411] [INSPIRE].

  3. [3]

    S.Y. Kim, A.H.G. Peter and J.R. Hargis, Missing Satellites Problem: Completeness Corrections to the Number of Satellite Galaxies in the Milky Way are Consistent with Cold Dark Matter Predictions, Phys. Rev. Lett. 121 (2018) 211302 [arXiv:1711.06267] [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    M. Boylan-Kolchin, J.S. Bullock and M. Kaplinghat, Too big to fail? The puzzling darkness of massive Milky Way subhaloes, Mon. Not. Roy. Astron. Soc. 415 (2011) L40 [arXiv:1103.0007] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    A.G. Riess et al., A 2.4% Determination of the Local Value of the Hubble Constant, Astrophys. J. 826 (2016) 56 [arXiv:1604.01424] [INSPIRE].

  6. [6]

    A.G. Riess et al., Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant, Astrophys. J. 861 (2018) 126 [arXiv:1804.10655] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    V. Bonvin et al., H0LiCOW — V. New COSMOGRAIL time delays of HE 0435–1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model, Mon. Not. Roy. Astron. Soc. 465 (2017) 4914 [arXiv:1607.01790] [INSPIRE].

  8. [8]

    S. Birrer et al., H0LiCOW — IX. Cosmographic analysis of the doubly imaged quasar SDSS 1206+4332 and a new measurement of the Hubble constant, Mon. Not. Roy. Astron. Soc. 484 (2019) 4726 [arXiv:1809.01274] [INSPIRE].

  9. [9]

    C. Heymans et al., CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments, Mon. Not. Roy. Astron. Soc. 432 (2013) 2433 [arXiv:1303.1808] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    DES collaboration, Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing, Phys. Rev. D 98 (2018) 043526 [arXiv:1708.01530] [INSPIRE].

  11. [11]

    HSC collaboration, Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data, Publ. Astron. Soc. Jap. 71 (2019) 43 [arXiv:1809.09148] [INSPIRE].

  12. [12]

    H. Hildebrandt et al., KiDS+VIKING-450: Cosmic shear tomography with optical and infrared data, Astron. Astrophys. 633 (2020) A69 [arXiv:1812.06076] [INSPIRE].

    Google Scholar 

  13. [13]

    G. Efstathiou, H0 Revisited, Mon. Not. Roy. Astron. Soc. 440 (2014) 1138 [arXiv:1311.3461] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    W.L. Freedman, Cosmology at a Crossroads, Nature Astron. 1 (2017) 0121 [arXiv:1706.02739] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    M. Rameez and S. Sarkar, Is there really a ‘Hubble tension’ ?, arXiv:1911.06456 [INSPIRE].

  16. [16]

    Z. Berezhiani, A.D. Dolgov and I.I. Tkachev, Reconciling Planck results with low redshift astronomical measurements, Phys. Rev. D 92 (2015) 061303 [arXiv:1505.03644] [INSPIRE].

  17. [17]

    L.A. Anchordoqui et al., IceCube neutrinos, decaying dark matter, and the Hubble constant, Phys. Rev. D 92 (2015) 061301 [Erratum ibid. 94 (2016) 069901] [arXiv:1506.08788] [INSPIRE].

  18. [18]

    A. Chudaykin, D. Gorbunov and I.I. Tkachev, Dark matter component decaying after recombination: Lensing constraints with Planck data, Phys. Rev. D 94 (2016) 023528 [arXiv:1602.08121] [INSPIRE].

  19. [19]

    A. Chudaykin, D. Gorbunov and I.I. Tkachev, Dark matter component decaying after recombination: Sensitivity to baryon acoustic oscillation and redshift space distortion probes, Phys. Rev. D 97 (2018) 083508 [arXiv:1711.06738] [INSPIRE].

  20. [20]

    K. Vattis, S.M. Koushiappas and A. Loeb, Dark matter decaying in the late Universe can relieve the H0 tension, Phys. Rev. D 99 (2019) 121302 [arXiv:1903.06220] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    K.L. Pandey, T. Karwal and S. Das, Alleviating the H0 and σ8 anomalies with a decaying dark matter model, JCAP 07 (2020) 026 [arXiv:1902.10636] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  22. [22]

    G. Choi, M. Suzuki and T.T. Yanagida, Quintessence Axion Dark Energy and a Solution to the Hubble Tension, Phys. Lett. B 805 (2020) 135408 [arXiv:1910.00459] [INSPIRE].

    MathSciNet  Google Scholar 

  23. [23]

    G. Choi, M. Suzuki and T.T. Yanagida, Degenerate Sub-keV Fermion Dark Matter from a Solution to the Hubble Tension, Phys. Rev. D 101 (2020) 075031 [arXiv:2002.00036] [INSPIRE].

  24. [24]

    N. Blinov, C. Keith and D. Hooper, Warm Decaying Dark Matter and the Hubble Tension, JCAP 06 (2020) 005 [arXiv:2004.06114] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  25. [25]

    G. Choi, M. Suzuki and T.T. Yanagida, XENON1T Anomaly and its Implication for Decaying Warm Dark Matter, Phys. Lett. B 811 (2020) 135976 [arXiv:2006.12348] [INSPIRE].

    Google Scholar 

  26. [26]

    V. Poulin, T.L. Smith, T. Karwal and M. Kamionkowski, Early Dark Energy Can Resolve The Hubble Tension, Phys. Rev. Lett. 122 (2019) 221301 [arXiv:1811.04083] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    P. Agrawal, F.-Y. Cyr-Racine, D. Pinner and L. Randall, Rock ’n’ Roll Solutions to the Hubble Tension, arXiv:1904.01016 [INSPIRE].

  28. [28]

    K. Dutta, Ruchika, A. Roy, A.A. Sen and M.M. Sheikh-Jabbari, Beyond ΛCDM with low and high redshift data: implications for dark energy, Gen. Rel. Grav. 52 (2020) 15 [arXiv:1808.06623] [INSPIRE].

  29. [29]

    S. Kumar, R.C. Nunes and S.K. Yadav, Dark sector interaction: a remedy of the tensions between CMB and LSS data, Eur. Phys. J. C 79 (2019) 576 [arXiv:1903.04865] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    F. Niedermann and M.S. Sloth, New Early Dark Energy, arXiv:1910.10739 [INSPIRE].

  31. [31]

    J. Sakstein and M. Trodden, Early Dark Energy from Massive Neutrinos as a Natural Resolution of the Hubble Tension, Phys. Rev. Lett. 124 (2020) 161301 [arXiv:1911.11760] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    E. Di Valentino, A. Melchiorri, O. Mena and S. Vagnozzi, Interacting dark energy in the early 2020s: A promising solution to the H0 and cosmic shear tensions, Phys. Dark Univ. 30 (2020) 100666 [arXiv:1908.04281] [INSPIRE].

    Google Scholar 

  33. [33]

    W. Yang, S. Pan, E. Di Valentino, R.C. Nunes, S. Vagnozzi and D.F. Mota, Tale of stable interacting dark energy, observational signatures, and the H0 tension, JCAP 09 (2018) 019 [arXiv:1805.08252] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    E. Di Valentino, A. Melchiorri, O. Mena and S. Vagnozzi, Nonminimal dark sector physics and cosmological tensions, Phys. Rev. D 101 (2020) 063502 [arXiv:1910.09853] [INSPIRE].

  35. [35]

    S. Vagnozzi, New physics in light of the H0 tension: An alternative view, Phys. Rev. D 102 (2020) 023518 [arXiv:1907.07569] [INSPIRE].

  36. [36]

    L. Visinelli, S. Vagnozzi and U. Danielsson, Revisiting a negative cosmological constant from low-redshift data, Symmetry 11 (2019) 1035 [arXiv:1907.07953] [INSPIRE].

    Google Scholar 

  37. [37]

    M.-X. Lin, G. Benevento, W. Hu and M. Raveri, Acoustic Dark Energy: Potential Conversion of the Hubble Tension, Phys. Rev. D 100 (2019) 063542 [arXiv:1905.12618] [INSPIRE].

  38. [38]

    G. Alestas, L. Kazantzidis and L. Perivolaropoulos, H0 tension, phantom dark energy, and cosmological parameter degeneracies, Phys. Rev. D 101 (2020) 123516 [arXiv:2004.08363] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    F. Niedermann and M.S. Sloth, Resolving the Hubble tension with new early dark energy, Phys. Rev. D 102 (2020) 063527 [arXiv:2006.06686] [INSPIRE].

  40. [40]

    P. Di Bari, S.F. King and A. Merle, Dark Radiation or Warm Dark Matter from long lived particle decays in the light of Planck, Phys. Lett. B 724 (2013) 77 [arXiv:1303.6267] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    M.A. Buen-Abad, G. Marques-Tavares and M. Schmaltz, Non-Abelian dark matter and dark radiation, Phys. Rev. D 92 (2015) 023531 [arXiv:1505.03542] [INSPIRE].

  42. [42]

    J. Lesgourgues, G. Marques-Tavares and M. Schmaltz, Evidence for dark matter interactions in cosmological precision data?, JCAP 02 (2016) 037 [arXiv:1507.04351] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    M. Raveri, W. Hu, T. Hoffman and L.-T. Wang, Partially Acoustic Dark Matter Cosmology and Cosmological Constraints, Phys. Rev. D 96 (2017) 103501 [arXiv:1709.04877] [INSPIRE].

    ADS  Google Scholar 

  44. [44]

    P. Ko, N. Nagata and Y. Tang, Hidden Charged Dark Matter and Chiral Dark Radiation, Phys. Lett. B 773 (2017) 513 [arXiv:1706.05605] [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    F. D’Eramo, R.Z. Ferreira, A. Notari and J.L. Bernal, Hot Axions and the H0 tension, JCAP 11 (2018) 014 [arXiv:1808.07430] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    P. Ko and Y. Tang, Light dark photon and fermionic dark radiation for the Hubble constant and the structure formation, Phys. Lett. B 762 (2016) 462 [arXiv:1608.01083] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    C.D. Kreisch, F.-Y. Cyr-Racine and O. Doré, Neutrino puzzle: Anomalies, interactions, and cosmological tensions, Phys. Rev. D 101 (2020) 123505 [arXiv:1902.00534] [INSPIRE].

    ADS  Google Scholar 

  48. [48]

    J. Alcaniz, N. Bernal, A. Masiero and F.S. Queiroz, Light Dark Matter: A Common Solution to the Lithium and H0 Problems, Phys. Lett. B 812 (2021) 136008 [arXiv:1912.05563] [INSPIRE].

    Google Scholar 

  49. [49]

    P. Ko and Y. Tang, Residual Non-Abelian Dark Matter and Dark Radiation, Phys. Lett. B 768 (2017) 12 [arXiv:1609.02307] [INSPIRE].

    ADS  MATH  Google Scholar 

  50. [50]

    M. Gonzalez, M.P. Hertzberg and F. Rompineve, Ultralight Scalar Decay and the Hubble Tension, JCAP 10 (2020) 028 [arXiv:2006.13959] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  51. [51]

    Y. Gu, M. Khlopov, L. Wu, J.M. Yang and B. Zhu, Light gravitino dark matter: LHC searches and the Hubble tension, Phys. Rev. D 102 (2020) 115005 [arXiv:2006.09906] [INSPIRE].

    ADS  Google Scholar 

  52. [52]

    M.A. Buen-Abad, M. Schmaltz, J. Lesgourgues and T. Brinckmann, Interacting Dark Sector and Precision Cosmology, JCAP 01 (2018) 008 [arXiv:1708.09406] [INSPIRE].

    ADS  Google Scholar 

  53. [53]

    Z. Chacko, Y. Cui, S. Hong, T. Okui and Y. Tsai, Partially Acoustic Dark Matter, Interacting Dark Radiation, and Large Scale Structure, JHEP 12 (2016) 108 [arXiv:1609.03569] [INSPIRE].

    ADS  Google Scholar 

  54. [54]

    G.F. Abellan, R. Murgia, V. Poulin and J. Lavalle, Hints for decaying dark matter from S8 measurements, arXiv:2008.09615 [INSPIRE].

  55. [55]

    S. Heimersheim, N. Schöneberg, D.C. Hooper and J. Lesgourgues, Cannibalism hinders growth: Cannibal Dark Matter and the S8 tension, JCAP 12 (2020) 016 [arXiv:2008.08486] [INSPIRE].

    ADS  Google Scholar 

  56. [56]

    Z. Davari, V. Marra and M. Malekjani, Cosmological constrains on minimally and non-minimally coupled scalar field models, Mon. Not. Roy. Astron. Soc. 491 (2020) 1920 [arXiv:1911.00209] [INSPIRE].

    ADS  Google Scholar 

  57. [57]

    S. Camera, M. Martinelli and D. Bertacca, Does quartessence ease cosmic tensions?, Phys. Dark Univ. 23 (2019) 100247 [arXiv:1704.06277] [INSPIRE].

    Google Scholar 

  58. [58]

    E. Di Valentino et al., Cosmology Intertwined II: The Hubble Constant Tension, arXiv:2008.11284 [INSPIRE].

  59. [59]

    E. Di Valentino et al., Cosmology Intertwined III: fσ8 and S8, arXiv:2008.11285 [INSPIRE].

  60. [60]

    N. Blinov and G. Marques-Tavares, Interacting radiation after Planck and its implications for the Hubble Tension, JCAP 09 (2020) 029 [arXiv:2003.08387] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  61. [61]

    D. Baumann, D. Green, J. Meyers and B. Wallisch, Phases of New Physics in the CMB, JCAP 01 (2016) 007 [arXiv:1508.06342] [INSPIRE].

    ADS  Google Scholar 

  62. [62]

    G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti and P.D. Serpico, Relic neutrino decoupling including flavor oscillations, Nucl. Phys. B 729 (2005) 221 [hep-ph/0506164] [INSPIRE].

  63. [63]

    K. Akita and M. Yamaguchi, A precision calculation of relic neutrino decoupling, JCAP 08 (2020) 012 [arXiv:2005.07047] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  64. [64]

    Z. Hou, R. Keisler, L. Knox, M. Millea and C. Reichardt, How Massless Neutrinos Affect the Cosmic Microwave Background Damping Tail, Phys. Rev. D 87 (2013) 083008 [arXiv:1104.2333] [INSPIRE].

  65. [65]

    S. Bashinsky and U. Seljak, Neutrino perturbations in CMB anisotropy and matter clustering, Phys. Rev. D 69 (2004) 083002 [astro-ph/0310198] [INSPIRE].

  66. [66]

    G. Choi, C.-T. Chiang and M. LoVerde, Probing Decoupling in Dark Sectors with the Cosmic Microwave Background, JCAP 06 (2018) 044 [arXiv:1804.10180] [INSPIRE].

    ADS  Google Scholar 

  67. [67]

    Z. Chacko, Y. Cui, S. Hong and T. Okui, Hidden dark matter sector, dark radiation, and the CMB, Phys. Rev. D 92 (2015) 055033 [arXiv:1505.04192] [INSPIRE].

  68. [68]

    C.-P. Ma and E. Bertschinger, Cosmological perturbation theory in the synchronous and conformal Newtonian gauges, Astrophys. J. 455 (1995) 7 [astro-ph/9506072] [INSPIRE].

  69. [69]

    T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

  70. [70]

    K. Nakayama, F. Takahashi and T.T. Yanagida, Number-Theory Dark Matter, Phys. Lett. B 699 (2011) 360 [arXiv:1102.4688] [INSPIRE].

    ADS  Google Scholar 

  71. [71]

    K. Nakayama, F. Takahashi and T.T. Yanagida, Revisiting the Number-Theory Dark Matter Scenario and the Weak Gravity Conjecture, Phys. Lett. B 790 (2019) 218 [arXiv:1811.01755] [INSPIRE].

    ADS  Google Scholar 

  72. [72]

    S. Dimopoulos, S. Raby and L. Susskind, Light Composite Fermions, Nucl. Phys. B 173 (1980) 208 [INSPIRE].

    ADS  Google Scholar 

  73. [73]

    G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135 [INSPIRE].

  74. [74]

    N. Arkani-Hamed and Y. Grossman, Light active and sterile neutrinos from compositeness, Phys. Lett. B 459 (1999) 179 [hep-ph/9806223] [INSPIRE].

  75. [75]

    A. Kamada, M. Yamada and T.T. Yanagida, Unification of the Standard Model and Dark Matter Sectors in [SU(5) × U(1)]4, JHEP 07 (2019) 180 [arXiv:1905.04245] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  76. [76]

    A. Kamada, M. Yamada and T.T. Yanagida, Unification for darkly charged dark matter, Phys. Rev. D 102 (2020) 015012 [arXiv:1908.00207] [INSPIRE].

  77. [77]

    S. Tulin, H.-B. Yu and K.M. Zurek, Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure, Phys. Rev. D 87 (2013) 115007 [arXiv:1302.3898] [INSPIRE].

    ADS  Google Scholar 

  78. [78]

    J.L. Feng, M. Kaplinghat and H.-B. Yu, Sommerfeld Enhancements for Thermal Relic Dark Matter, Phys. Rev. D 82 (2010) 083525 [arXiv:1005.4678] [INSPIRE].

  79. [79]

    J.L. Feng, M. Kaplinghat, H. Tu and H.-B. Yu, Hidden Charged Dark Matter, JCAP 07 (2009) 004 [arXiv:0905.3039] [INSPIRE].

    ADS  Google Scholar 

  80. [80]

    P. Agrawal, F.-Y. Cyr-Racine, L. Randall and J. Scholtz, Make Dark Matter Charged Again, JCAP 05 (2017) 022 [arXiv:1610.04611] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gong jun Choi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2010.06892

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choi, G.j., Yanagida, T.T. & Yokozaki, N. A model of interacting dark matter and dark radiation for H0 and σ8 tensions. J. High Energ. Phys. 2021, 127 (2021). https://doi.org/10.1007/JHEP01(2021)127

Download citation

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM