Global analysis of the Sivers functions at NLO+NNLL in QCD


We perform global fit to the quark Sivers function within the transverse momentum dependent (TMD) factorization formalism in QCD. We simultaneously fit Sivers asymmetry data from Semi-Inclusive Deep Inelastic Scattering (SIDIS) at COMPASS, HERMES, and JLab, from Drell-Yan lepton pair production at COMPASS, and from W/Z boson at RHIC. This extraction is performed at next-to-leading order (NLO) and next-to-next-to leading logarithmic (NNLL) accuracy. We find excellent agreement between our extracted asymmetry and the experimental data for SIDIS and Drell-Yan lepton pair production, while tension arises when trying to describe the spin asymmetries of W/Z bosons at RHIC. We carefully assess the situation, and we study in details the impact of the RHIC data and their implications through different ways of performing the fit. In addition, we find that the quality of the description of W/Z vector boson asymmetry data could be strongly sensitive to the DGLAP evolution of Qiu-Sterman function, besides the usual TMD evolution. We present discussion on this and the implications for measurements of the transverse-spin asymmetries at the future Electron Ion Collider.

A preprint version of the article is available at ArXiv.


  1. [1]

    G. Bunce et al., Lambda0 hyperon polarization in inclusive production by 300-GeV protons on beryllium, Phys. Rev. Lett. 36 (1976) 1113 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    G.L. Kane, J. Pumplin and W. Repko, Transverse quark polarization in large pT reactions, e+ e jets, and leptoproduction: a test of QCD, Phys. Rev. Lett. 41 (1978) 1689 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    D. Boer et al., Gluons and the quark sea at high energies: Distributions, polarization, tomography, arXiv:1108.1713 [INSPIRE].

  4. [4]

    A. Accardi et al., Electron ion collider: the next QCD frontier: understanding the glue that binds us all, Eur. Phys. J. A 52 (2016) 268 [arXiv:1212.1701] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    H.-W. Lin et al., Parton distributions and lattice QCD calculations: a community white paper, Prog. Part. Nucl. Phys. 100 (2018) 107 [arXiv:1711.07916] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    A. Prokudin et al., Probing nucleons and nuclei in high energy collisions: dedicated to the physics of the electron ion collider, World Scientific, Sinagpore (2020).

    Google Scholar 

  7. [7]

    D.W. Sivers, Single spin production asymmetries from the hard scattering of point-like constituents, Phys. Rev. D 41 (1990) 83 [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    D.W. Sivers, Hard scattering scaling laws for single spin production asymmetries, Phys. Rev. D 43 (1991) 261 [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    S.J. Brodsky, D.S. Hwang and I. Schmidt, Final state interactions and single spin asymmetries in semiinclusive deep inelastic scattering, Phys. Lett. B 530 (2002) 99 [hep-ph/0201296] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    J.C. Collins, Leading twist single transverse-spin asymmetries: Drell-Yan and deep inelastic scattering, Phys. Lett. B 536 (2002) 43 [hep-ph/0204004] [INSPIRE].

  11. [11]

    D. Boer, P.J. Mulders and F. Pijlman, Universality of T odd effects in single spin and azimuthal asymmetries, Nucl. Phys. B 667 (2003) 201 [hep-ph/0303034] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    Z.-B. Kang, J.-W. Qiu, W. Vogelsang and F. Yuan, An observation concerning the process dependence of the Sivers functions, Phys. Rev. D 83 (2011) 094001 [arXiv:1103.1591] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    Z.-B. Kang and J.-W. Qiu, Testing the time-reversal modified universality of the Sivers function, Phys. Rev. Lett. 103 (2009) 172001 [arXiv:0903.3629] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    M. Constantinou et al., Parton distributions and lattice QCD calculations: toward 3D structure, arXiv:2006.08636 [INSPIRE].

  15. [15]

    J. Collins, Foundations of perturbative QCD, Cambridge Monographies on Particle Physics Nuclear Physics and Cosmololgy volume 32, Cambridge University Press, Camrbdieg U.K. (2013) [INSPIRE].

  16. [16]

    X.-d. Ji, J.-p. Ma and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev. D 71 (2005) 034005 [hep-ph/0404183] [INSPIRE].

  17. [17]

    J.C. Collins and D.E. Soper, Back-to-back jets in QCD, Nucl. Phys. B 193 (1981) 381 [Erratum ibid. 213 (1983) 545] [INSPIRE].

  18. [18]

    M.G. Echevarria, A. Idilbi and I. Scimemi, Factorization theorem for Drell-Yan at low qT and transverse momentum distributions on-the-light-cone, JHEP 07 (2012) 002 [arXiv:1111.4996] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    A. Bacchetta, F. Delcarro, C. Pisano, M. Radici and A. Signori, Extraction of partonic transverse momentum distributions from semi-inclusive deep-inelastic scattering, Drell-Yan and Z-boson production, JHEP 06 (2017) 081 [Erratum ibid. 06 (2019) 051] [arXiv:1703.10157] [INSPIRE].

  20. [20]

    C. Pisano, A. Bacchetta, F. Delcarro, M. Radici and A. Signori, A first determination of the unpolarized quark TMDs from a global analysis, PoS QCDEV2017 (2018) 010 [arXiv:1801.08443] [INSPIRE].

  21. [21]

    I. Scimemi and A. Vladimirov, Analysis of vector boson production within TMD factorization, Eur. Phys. J. C 78 (2018) 89 [arXiv:1706.01473] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    A. Bacchetta et al., Transverse-momentum-dependent parton distributions up to N3 LL from Drell-Yan data, JHEP 07 (2020) 117 [arXiv:1912.07550] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    I. Scimemi and A. Vladimirov, Non-perturbative structure of semi-inclusive deep-inelastic and Drell-Yan scattering at small transverse momentum, JHEP 06 (2020) 137 [arXiv:1912.06532] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    M. Boglione et al., Mapping the kinematical regimes of semi-inclusive deep inelastic scattering, JHEP 10 (2019) 122 [arXiv:1904.12882] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    M. Grewal, Z.-B. Kang, J.-W. Qiu and A. Signori, Predictive power of transverse-momentum-dependent distributions, Phys. Rev. D 101 (2020) 114023 [arXiv:2003.07453] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    J. Collins, L. Gamberg, A. Prokudin, T.C. Rogers, N. Sato and B. Wang, Relating transverse momentum dependent and collinear factorization theorems in a generalized formalism, Phys. Rev. D 94 (2016) 034014 [arXiv:1605.00671] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    L. Gamberg, A. Metz, D. Pitonyak and A. Prokudin, Connections between collinear and transverse-momentum-dependent polarized observables within the Collins-Soper-Sterman formalism, Phys. Lett. B 781 (2018) 443 [arXiv:1712.08116] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  28. [28]

    Jefferson Lab Angular Momentum collaboration, Origin of single transverse-spin asymmetries in high-energy collisions, Phys. Rev. D 102 (2020) 054002 [arXiv:2002.08384] [INSPIRE].

  29. [29]

    M.G. Echevarria, A. Idilbi, Z.-B. Kang and I. Vitev, QCD evolution of the Sivers asymmetry, Phys. Rev. D 89 (2014) 074013 [arXiv:1401.5078] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    A. Bacchetta, F. Delcarro, C. Pisano and M. Radici, The three-dimensional distribution of quarks in momentum space, arXiv:2004.14278 [INSPIRE].

  31. [31]

    Z.-B. Kang and J.-W. Qiu, Evolution of twist-3 multi-parton correlation functions relevant to single transverse-spin asymmetry, Phys. Rev. D 79 (2009) 016003 [arXiv:0811.3101] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    J. Zhou, F. Yuan and Z.-T. Liang, QCD evolution of the transverse momentum dependent correlations, Phys. Rev. D 79 (2009) 114022 [arXiv:0812.4484] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    W. Vogelsang and F. Yuan, Next-to-leading order calculation of the single transverse spin asymmetry in the Drell-Yan process, Phys. Rev. D 79 (2009) 094010 [arXiv:0904.0410] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    V.M. Braun, A.N. Manashov and B. Pirnay, Scale dependence of twist-three contributions to single spin asymmetries, Phys. Rev. D 80 (2009) 114002 [Erratum ibid. 86 (2012) 119902] [arXiv:0909.3410] [INSPIRE].

  35. [35]

    Z.-B. Kang and J.-W. Qiu, QCD evolution of naive-time-reversal-odd parton distribution functions, Phys. Lett. B 713 (2012) 273 [arXiv:1205.1019] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    Z.-B. Kang, I. Vitev and H. Xing, Transverse momentum-weighted Sivers asymmetry in semi-inclusive deep inelastic scattering at next-to-leading order, Phys. Rev. D 87 (2013) 034024 [arXiv:1212.1221] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    A. Schafer and J. Zhou, A Note on the scale evolution of the ETQS function TF(x, x), Phys. Rev. D 85 (2012) 117501 [arXiv:1203.5293] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    J.P. Ma, Q. Wang and G.P. Zhang, QCD evolutions of twist-3 chirality-odd operators, Phys. Lett. B 718 (2013) 1358 [arXiv:1210.1006] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  39. [39]

    L.-Y. Dai, Z.-B. Kang, A. Prokudin and I. Vitev, Next-to-leading order transverse momentum-weighted Sivers asymmetry in semi-inclusive deep inelastic scattering: the role of the three-gluon correlator, Phys. Rev. D 92 (2015) 114024 [arXiv:1409.5851] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    P. Sun and F. Yuan, Transverse momentum dependent evolution: Matching semi-inclusive deep inelastic scattering processes to Drell-Yan and W/Z boson production, Phys. Rev. D 88 (2013) 114012 [arXiv:1308.5003] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    HERMES collaboration, Observation of the naive-T-odd Sivers effect in deep-inelastic scattering, Phys. Rev. Lett. 103 (2009) 152002 [arXiv:0906.3918] [INSPIRE].

  42. [42]

    COMPASS collaboration, II — Experimental investigation of transverse spin asymmetries in μ-p SIDIS processes: Sivers asymmetries, Phys. Lett. B 717 (2012) 383 [arXiv:1205.5122] [INSPIRE].

  43. [43]

    COMPASS collaboration, Sivers asymmetry extracted in SIDIS at the hard scales of the Drell-Yan process at COMPASS, Phys. Lett. B 770 (2017) 138 [arXiv:1609.07374] [INSPIRE].

  44. [44]

    COMPASS collaboration, Collins and Sivers asymmetries for pions and kaons in muon-deuteron DIS, Phys. Lett. B 673 (2009) 127 [arXiv:0802.2160] [INSPIRE].

  45. [45]

    Jefferson Lab Hall A collaboration, Single spin asymmetries in charged pion production from semi-inclusive deep inelastic scattering on a transversely polarized 3 He target, Phys. Rev. Lett. 107 (2011) 072003 [arXiv:1106.0363] [INSPIRE].

  46. [46]

    COMPASS collaboration, First measurement of transverse-spin-dependent azimuthal asymmetries in the Drell-Yan process, Phys. Rev. Lett. 119 (2017) 112002 [arXiv:1704.00488] [INSPIRE].

  47. [47]

    STAR collaboration, Measurement of the transverse single-spin asymmetry in p + p → W ± /Z 0 at RHIC, Phys. Rev. Lett. 116 (2016) 132301 [arXiv:1511.06003] [INSPIRE].

  48. [48]

    A. Bacchetta et al., Semi-inclusive deep inelastic scattering at small transverse momentum, JHEP 02 (2007) 093 [hep-ph/0611265] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    A. Bacchetta, U. D’Alesio, M. Diehl and C. Miller, Single-spin asymmetries: the Trento conventions, Phys. Rev. D 70 (2004) 117504 [hep-ph/0410050] [INSPIRE].

  50. [50]

    A.V. Manohar, Deep inelastic scattering as x → 1 using soft collinear effective theory, Phys. Rev. D 68 (2003) 114019 [hep-ph/0309176] [INSPIRE].

  51. [51]

    A. Idilbi and X.-d. Ji, Threshold resummation for Drell-Yan process in soft-collinear effective theory, Phys. Rev. D 72 (2005) 054016 [hep-ph/0501006] [INSPIRE].

  52. [52]

    I. Scimemi, A. Tarasov and A. Vladimirov, Collinear matching for Sivers function at next-to-leading order, JHEP 05 (2019) 125 [arXiv:1901.04519] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. [53]

    M.G. Echevarria, I. Scimemi and A. Vladimirov, Unpolarized transverse momentum dependent parton distribution and fragmentation functions at next-to-next-to-leading order, JHEP 09 (2016) 004 [arXiv:1604.07869] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  54. [54]

    J.C. Collins, D.E. Soper and G.F. Sterman, Transverse momentum distribution in Drell-Yan pair and W and Z boson production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    S. Arnold, A. Metz and M. Schlegel, Dilepton production from polarized hadron hadron collisions, Phys. Rev. D 79 (2009) 034005 [arXiv:0809.2262] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    Z.-B. Kang and J.-W. Qiu, Single transverse spin asymmetry of dilepton production near Z0 pole, Phys. Rev. D 81 (2010) 054020 [arXiv:0912.1319] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F. Murgia and A. Prokudin, Sivers effect in Drell-Yan processes, Phys. Rev. D 79 (2009) 054010 [arXiv:0901.3078] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    J. Huang, Z.-B. Kang, I. Vitev and H. Xing, Spin asymmetries for vector boson production in polarized p+p collisions, Phys. Rev. D 93 (2016) 014036 [arXiv:1511.06764] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    A.S. Ito et al., Measurement of the continuum of dimuons produced in high-energy proton-nucleus collisions, Phys. Rev. D 23 (1981) 604 [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    HERMES collaboration, Multiplicities of charged pions and kaons from semi-inclusive deep-inelastic scattering by the proton and the deuteron, Phys. Rev. D 87 (2013) 074029 [arXiv:1212.5407] [INSPIRE].

  61. [61]

    COMPASS collaboration, Transverse-momentum-dependent multiplicities of charged hadrons in muon-deuteron deep inelastic scattering, Phys. Rev. D 97 (2018) 032006 [arXiv:1709.07374] [INSPIRE].

  62. [62]

    P. Sun, J. Isaacson, C.P. Yuan and F. Yuan, Nonperturbative functions for SIDIS and Drell-Yan processes, Int. J. Mod. Phys. A 33 (2018) 1841006 [arXiv:1406.3073] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    X. Wang, Z. Lu and I. Schmidt, Transverse momentum spectrum of dilepton pair in the unpolarized π N Drell-Yan process within TMD factorization, JHEP 08 (2017) 137 [arXiv:1707.05207] [INSPIRE].

    ADS  Article  Google Scholar 

  64. [64]

    J.S. Conway et al., Experimental study of muon pairs produced by 252-GeV pions on tungsten, Phys. Rev. D 39 (1989) 92 [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    H1, ZEUS collaboration, Combination of measurements of inclusive deep inelastic e± p scattering cross sections and QCD analysis of HERA data, Eur. Phys. J. C 75 (2015) 580 [arXiv:1506.06042] [INSPIRE].

  66. [66]

    D. de Florian, R. Sassot, M. Epele, R.J. Hernández-Pinto and M. Stratmann, Parton-to-pion fragmentation reloaded, Phys. Rev. D 91 (2015) 014035 [arXiv:1410.6027] [INSPIRE].

    ADS  Article  Google Scholar 

  67. [67]

    D. de Florian, M. Epele, R.J. Hernandez-Pinto, R. Sassot and M. Stratmann, Parton-to-kaon fragmentation revisited, Phys. Rev. D 95 (2017) 094019 [arXiv:1702.06353] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    K.J. Eskola, V.J. Kolhinen and C.A. Salgado, The scale dependent nuclear effects in parton distributions for practical applications, Eur. Phys. J. C 9 (1999) 61 [hep-ph/9807297] [INSPIRE].

  69. [69]

    H1 collaboration, Inclusive deep inelastic scattering at high Q2 with longitudinally polarised lepton beams at HERA, JHEP 09 (2012) 061 [arXiv:1206.7007] [INSPIRE].

  70. [70]

    V. Bertone, S. Carrazza and J. Rojo, APFEL: a PDF evolution library with QED corrections, Comput. Phys. Commun. 185 (2014) 1647 [arXiv:1310.1394] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  71. [71]

    Z.-B. Kang, J.-W. Qiu and H. Zhang, Quark-gluon correlation functions relevant to single transverse spin asymmetries, Phys. Rev. D 81 (2010) 114030 [arXiv:1004.4183] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    A. Vogt, Efficient evolution of unpolarized and polarized parton distributions with QCD-PEGASUS, Comput. Phys. Commun. 170 (2005) 65 [hep-ph/0408244] [INSPIRE].

  73. [73]

    F. James and M. Roos, Minuit: a system for function minimization and analysis of the parameter errors and correlations, Comput. Phys. Commun. 10 (1975) 343 [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    F. James and M. Winkler, MINUIT user’s guide (2004).

  75. [75]

    Z.-B. Kang, A. Prokudin, N. Sato and J. Terry, Efficient Fourier transforms for transverse momentum dependent distributions, Comput. Phys. Commun. 258 (2021) 107611 [arXiv:1906.05949] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  76. [76]

    D. Callos, Z.-B. Kang and J. Terry, Extracting the transverse momentum dependent polarizing fragmentation functions, Phys. Rev. D 102 (2020) 096007 [arXiv:2003.04828] [INSPIRE].

    ADS  Article  Google Scholar 

  77. [77]

    HERMES collaboration, Azimuthal single- and double-spin asymmetries in semi-inclusive deep-inelastic lepton scattering by transversely polarized protons, arXiv:2007.07755 [INSPIRE].

  78. [78]

    T.J. Hou et al., CTEQ-TEA parton distribution functions and HERA Run I and II combined data, Phys. Rev. D 95 (2017) 034003 [arXiv:1609.07968]x [INSPIRE].

    ADS  Article  Google Scholar 

  79. [79]

    E.-C. Aschenauer et al., The RHIC cold QCD plan for 2017 to 2023: a portal to the EIC, arXiv:1602.03922 [INSPIRE].

  80. [80]

    J.-w. Qiu and X.-f. Zhang, Role of the nonperturbative input in QCD resummed Drell-Yan QT distributions, Phys. Rev. D 63 (2001) 114011 [hep-ph/0012348] [INSPIRE].

  81. [81]

    S. Aybat and T.C. Rogers, TMD parton distribution and fragmentation functions with QCD evolution, Phys. Rev. D 83 (2011) 114042 [arXiv:1101.5057] [INSPIRE].

    ADS  Article  Google Scholar 

  82. [82]

    Z.-B. Kang, A. Prokudin, P. Sun and F. Yuan, Extraction of quark transversity distribution and collins fragmentation functions with QCD evolution, Phys. Rev. D 93 (2016) 014009 [arXiv:1505.05589] [INSPIRE].

    ADS  Article  Google Scholar 

  83. [83]

    J.C. Collins and T.C. Rogers, Equality of two definitions for transverse momentum dependent parton distribution functions, Phys. Rev. D 87 (2013) 034018 [arXiv:1210.2100] [INSPIRE].

    ADS  Article  Google Scholar 

  84. [84]

    Particle Data Group collaboration, Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

Download references

Author information



Corresponding author

Correspondence to John Terry.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2009.10710

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Echevarria, M.G., Kang, ZB. & Terry, J. Global analysis of the Sivers functions at NLO+NNLL in QCD. J. High Energ. Phys. 2021, 126 (2021).

Download citation


  • QCD Phenomenology