Sterile neutrino dark matter and leptogenesis in Left-Right Higgs Parity


The standard model Higgs quartic coupling vanishes at (109 − 1013) GeV. We study SU(2)L × SU(2)R × U(1)B−L theories that incorporate the Higgs Parity mechanism, where this becomes the scale of Left-Right symmetry breaking, vR. Furthermore, these theories solve the strong CP problem and predict three right-handed neutrinos. We introduce cosmologies where SU(2)R × U(1)B−L gauge interactions produce right-handed neutrinos via the freeze-out or freeze-in mechanisms. In both cases, we find the parameter space where the lightest right-handed neutrino is dark matter and the decay of a heavier one creates the baryon asymmetry of the universe via leptogenesis. A theory of flavor is constructed that naturally accounts for the lightness and stability of the right-handed neutrino dark matter, while maintaining sufficient baryon asymmetry. The dark matter abundance and successful natural leptogenesis require vR to be in the range (1010 1013) GeV for freeze-out, in remarkable agreement with the scale where the Higgs quartic coupling vanishes, whereas freeze-in requires vR ≳ 109 GeV. The allowed parameter space can be probed by the warmness of dark matter, precise determinations of the top quark mass and QCD coupling by future colliders and lattice computations, and measurement of the neutrino mass hierarchy.

A preprint version of the article is available at ArXiv.


  1. [1]

    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. [2]

    CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. [3]

    M. Redi and A. Strumia, Axion-Higgs Unification, JHEP 11 (2012) 103 [arXiv:1208.6013] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    L.J. Hall and Y. Nomura, Grand Unification and Intermediate Scale Supersymmetry, JHEP 02 (2014) 129 [arXiv:1312.6695] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    M. Ibe, S. Matsumoto and T.T. Yanagida, Flat Higgs Potential from Planck Scale Supersymmetry Breaking, Phys. Lett. B 732 (2014) 214 [arXiv:1312.7108] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    L.J. Hall, Y. Nomura and S. Shirai, Grand Unification, Axion, and Inflation in Intermediate Scale Supersymmetry, JHEP 06 (2014) 137 [arXiv:1403.8138] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    P.J. Fox, G.D. Kribs and A. Martin, Split Dirac Supersymmetry: An Ultraviolet Completion of Higgsino Dark Matter, Phys. Rev. D 90 (2014) 075006 [arXiv:1405.3692] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    L.J. Hall and K. Harigaya, Implications of Higgs Discovery for the Strong CP Problem and Unification, JHEP 10 (2018) 130 [arXiv:1803.08119] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    D. Dunsky, L.J. Hall and K. Harigaya, Higgs Parity, Strong CP, and Dark Matter, JHEP 07 (2019) 016 [arXiv:1902.07726] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    D. Dunsky, L.J. Hall and K. Harigaya, Dark Matter, Dark Radiation and Gravitational Waves from Mirror Higgs Parity, JHEP 02 (2020) 078 [arXiv:1908.02756] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. 11 (1975) 703] [INSPIRE].

  12. [12]

    R.N. Mohapatra and J.C. Pati, A Natural Left-Right Symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    G. Senjanović and R.N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation of Parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    L.J. Hall and K. Harigaya, Higgs Parity Grand Unification, JHEP 11 (2019) 033 [arXiv:1905.12722] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    K.S. Babu and R.N. Mohapatra, A Solution to the Strong CP Problem Without an Axion, Phys. Rev. D 41 (1990) 1286 [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    P. Sikivie, Of Axions, Domain Walls and the Early Universe, Phys. Rev. Lett. 48 (1982) 1156 [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    R.L. Davis, Cosmic Axions from Cosmic Strings, Phys. Lett. B 180 (1986) 225 [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    M. Kawasaki, K. Saikawa and T. Sekiguchi, Axion dark matter from topological defects, Phys. Rev. D 91 (2015) 065014 [arXiv:1412.0789] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    R.T. Co, L.J. Hall and K. Harigaya, QCD Axion Dark Matter with a Small Decay Constant, Phys. Rev. Lett. 120 (2018) 211602 [arXiv:1711.10486] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    R.T. Co, L.J. Hall and K. Harigaya, Axion Kinetic Misalignment Mechanism, Phys. Rev. Lett. 124 (2020) 251802 [arXiv:1910.14152] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].

    Google Scholar 

  29. [29]

    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

    Google Scholar 

  30. [30]

    P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

  31. [31]

    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  32. [32]

    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    S. Khalil and O. Seto, Sterile neutrino dark matter in B − L extension of the standard model and galactic 511-keV line, JCAP 10 (2008) 024 [arXiv:0804.0336] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    F. Bezrukov, H. Hettmansperger and M. Lindner, keV sterile neutrino Dark Matter in gauge extensions of the Standard Model, Phys. Rev. D 81 (2010) 085032 [arXiv:0912.4415] [INSPIRE].

  35. [35]

    J.A. Dror, D. Dunsky, L.J. Hall and K. Harigaya, Sterile Neutrino Dark Matter in Left-Right Theories, JHEP 07 (2020) 168 [arXiv:2004.09511] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    M.A.B. Beg and H.-S. Tsao, Strong P, T Noninvariances in a Superweak Theory, Phys. Rev. Lett. 41 (1978) 278 [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    R.N. Mohapatra and G. Senjanović, Natural Suppression of Strong p and t Noninvariance, Phys. Lett. B 79 (1978) 283 [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    R. Kuchimanchi, Solution to the strong CP problem: Supersymmetry with parity, Phys. Rev. Lett. 76 (1996) 3486 [hep-ph/9511376] [INSPIRE].

  39. [39]

    R.N. Mohapatra and A. Rasin, Simple supersymmetric solution to the strong CP problem, Phys. Rev. Lett. 76 (1996) 3490 [hep-ph/9511391] [INSPIRE].

  40. [40]

    K.S. Babu and R.N. Mohapatra, CP Violation in Seesaw Models of Quark Masses, Phys. Rev. Lett. 62 (1989) 1079 [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [INSPIRE].

  43. [43]

    M. Drewes et al., A White Paper on keV Sterile Neutrino Dark Matter, JCAP 01 (2017) 025 [arXiv:1602.04816] [INSPIRE].

    Google Scholar 

  44. [44]

    K. Nandra et al., The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission, arXiv:1306.2307 [INSPIRE].

  45. [45]

    V. Tatischeff et al., The e-ASTROGAM gamma-ray space mission, Proc. SPIE Int. Soc. Opt. Eng. 9905 (2016) 99052N [arXiv:1608.03739] [INSPIRE].

    Google Scholar 

  46. [46]

    A. Caputo, M. Regis and M. Taoso, Searching for Sterile Neutrino with X-ray Intensity Mapping, JCAP 03 (2020) 001 [arXiv:1911.09120] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    R. Essig, E. Kuflik, S.D. McDermott, T. Volansky and K.M. Zurek, Constraining Light Dark Matter with Diffuse X-Ray and Gamma-Ray Observations, JHEP 11 (2013) 193 [arXiv:1309.4091] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    L. Lavoura, General formulae for f1 → f2 γ, Eur. Phys. J. C 29 (2003) 191 [hep-ph/0302221] [INSPIRE].

  49. [49]

    A. Greljo, D.J. Robinson, B. Shakya and J. Zupan, R(D(∗)) from W and right-handed neutrinos, JHEP 09 (2018) 169 [arXiv:1804.04642] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    S. Tremaine and J.E. Gunn, Dynamical Role of Light Neutral Leptons in Cosmology, Phys. Rev. Lett. 42 (1979) 407 [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    A. Boyarsky, O. Ruchayskiy and D. Iakubovskyi, A lower bound on the mass of Dark Matter particles, JCAP 03 (2009) 005 [arXiv:0808.3902] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    D. Gorbunov, A. Khmelnitsky and V. Rubakov, Constraining sterile neutrino dark matter by phase-space density observations, JCAP 10 (2008) 041 [arXiv:0808.3910] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    V.K. Narayanan, D.N. Spergel, R. Dave and C.-P. Ma, Constraints on the mass of warm dark matter particles and the shape of the linear power spectrum from the Lyα forest, Astrophys. J. Lett. 543 (2000) L103 [astro-ph/0005095] [INSPIRE].

  54. [54]

    V. Iršič et al., New Constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data, Phys. Rev. D 96 (2017) 023522 [arXiv:1702.01764] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  55. [55]

    C. Yèche, N. Palanque-Delabrouille, J. Baur and H. du Mas des Bourboux, Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100, JCAP 06 (2017) 047 [arXiv:1702.03314] [INSPIRE].

  56. [56]

    U. Seljak, A. Makarov, P. McDonald and H. Trac, Can sterile neutrinos be the dark matter?, Phys. Rev. Lett. 97 (2006) 191303 [astro-ph/0602430] [INSPIRE].

  57. [57]

    T. Asaka, M. Shaposhnikov and A. Kusenko, Opening a new window for warm dark matter, Phys. Lett. B 638 (2006) 401 [hep-ph/0602150] [INSPIRE].

  58. [58]

    K. Harigaya and M. Kawasaki, QCD axion dark matter from long-lived domain walls during matter domination, Phys. Lett. B 782 (2018) 1 [arXiv:1802.00579] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    M. Kawasaki, K. Kohri and N. Sugiyama, Cosmological constraints on late time entropy production, Phys. Rev. Lett. 82 (1999) 4168 [astro-ph/9811437] [INSPIRE].

  60. [60]

    M. Kawasaki, K. Kohri and N. Sugiyama, MeV scale reheating temperature and thermalization of neutrino background, Phys. Rev. D 62 (2000) 023506 [astro-ph/0002127] [INSPIRE].

  61. [61]

    T. Hasegawa, N. Hiroshima, K. Kohri, R.S.L. Hansen, T. Tram and S. Hannestad, MeV-scale reheating temperature and thermalization of oscillating neutrinos by radiative and hadronic decays of massive particles, JCAP 12 (2019) 012 [arXiv:1908.10189] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    K. Ichikawa, M. Kawasaki and F. Takahashi, The oscillation effects on thermalization of the neutrinos in the Universe with low reheating temperature, Phys. Rev. D 72 (2005) 043522 [astro-ph/0505395] [INSPIRE].

  63. [63]

    P.F. de Salas, M. Lattanzi, G. Mangano, G. Miele, S. Pastor and O. Pisanti, Bounds on very low reheating scenarios after Planck, Phys. Rev. D 92 (2015) 123534 [arXiv:1511.00672] [INSPIRE].

    ADS  Article  Google Scholar 

  64. [64]

    J.B. Muñoz, C. Dvorkin and F.-Y. Cyr-Racine, Probing the Small-Scale Matter Power Spectrum with Large-Scale 21-cm Data, Phys. Rev. D 101 (2020) 063526 [arXiv:1911.11144] [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    L. Feng, J.-F. Zhang and X. Zhang, A search for sterile neutrinos with the latest cosmological observations, Eur. Phys. J. C 77 (2017) 418 [arXiv:1703.04884] [INSPIRE].

    ADS  Article  Google Scholar 

  66. [66]

    CMB-S4 collaboration, CMB-S4 Science Book, First Edition, arXiv:1610.02743 [INSPIRE].

  67. [67]

    K. Abazajian et al., CMB-S4 Science Case, Reference Design, and Project Plan, arXiv:1907.04473 [INSPIRE].

  68. [68]

    J. Heeck and D. Teresi, Cold keV dark matter from decays and scatterings, Phys. Rev. D 96 (2017) 035018 [arXiv:1706.09909] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    J.A. Harvey and M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation, Phys. Rev. D 42 (1990) 3344 [INSPIRE].

    ADS  Article  Google Scholar 

  70. [70]

    E.W. Kolb and M.S. Turner, The Early Universe, vol. 69, Perseus Books (1990).

  71. [71]

    R.T. Co, F. D’Eramo, L.J. Hall and D. Pappadopulo, Freeze-In Dark Matter with Displaced Signatures at Colliders, JCAP 12 (2015) 024 [arXiv:1506.07532] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].

  73. [73]

    L. Covi, E. Roulet and F. Vissani, CP violating decays in leptogenesis scenarios, Phys. Lett. B 384 (1996) 169 [hep-ph/9605319] [INSPIRE].

  74. [74]

    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    X.-D. Shi and G.M. Fuller, A new dark matter candidate: Nonthermal sterile neutrinos, Phys. Rev. Lett. 82 (1999) 2832 [astro-ph/9810076] [INSPIRE].

  76. [76]

    I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ23, δCP, and the mass ordering, JHEP 01 (2019) 106 [arXiv:1811.05487] [INSPIRE].

    ADS  Article  Google Scholar 

  77. [77]

    K. Seidel, F. Simon, M. Tesar and S. Poss, Top quark mass measurements at and above threshold at CLIC, Eur. Phys. J. C 73 (2013) 2530 [arXiv:1303.3758] [INSPIRE].

    ADS  Article  Google Scholar 

  78. [78]

    T. Horiguchi et al., Study of top quark pair production near threshold at the ILC, arXiv:1310.0563 [INSPIRE].

  79. [79]

    Y. Kiyo, G. Mishima and Y. Sumino, Strong IR Cancellation in Heavy Quarkonium and Precise Top Mass Determination, JHEP 11 (2015) 084 [arXiv:1506.06542] [INSPIRE].

    ADS  Article  Google Scholar 

  80. [80]

    M. Beneke, Y. Kiyo, P. Marquard, A. Penin, J. Piclum and M. Steinhauser, Next-to-Next-to-Next-to-Leading Order QCD Prediction for the Top Antitop S-Wave Pair Production Cross Section Near Threshold in e+ e Annihilation, Phys. Rev. Lett. 115 (2015) 192001 [arXiv:1506.06864] [INSPIRE].

    ADS  Article  Google Scholar 

  81. [81]

    Y. Zeldovich, I. Kobzarev and L.B. Okun, Cosmological Consequences of the Spontaneous Breakdown of Discrete Symmetry, Zh. Eksp. Teor. Fiz. 67 (1974) 3 [INSPIRE].

    ADS  Google Scholar 

  82. [82]

    K. Harigaya and K. Mukaida, Thermalization after/during Reheating, JHEP 05 (2014) 006 [arXiv:1312.3097] [INSPIRE].

    ADS  Article  Google Scholar 

  83. [83]

    K. Mukaida and M. Yamada, Thermalization Process after Inflation and Effective Potential of Scalar Field, JCAP 02 (2016) 003 [arXiv:1506.07661] [INSPIRE].

    ADS  Article  Google Scholar 

  84. [84]

    R.T. Co, E. Gonzalez and K. Harigaya, Increasing Temperature toward the Completion of Reheating, JCAP 11 (2020) 038 [arXiv:2007.04328] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to David Dunsky.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2007.12711

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dunsky, D., Hall, L.J. & Harigaya, K. Sterile neutrino dark matter and leptogenesis in Left-Right Higgs Parity. J. High Energ. Phys. 2021, 125 (2021).

Download citation


  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • Higgs Physics
  • Neutrino Physics