2HDM singlet portal to dark matter


Higgs portal models are the most minimal way to explain the relic abundance of the Universe. They add just a singlet that only couples to the Higgs through a single parameter that controls both the dark matter relic abundance and the direct detection cross-section. Unfortunately this scenario, either with scalar or fermionic dark matter, is almost ruled out by the latter. In this paper we analyze the Higgs-portal idea with fermionic dark matter in the context of a 2HDM. By disentangling the couplings responsible for the correct relic density from those that control the direct detection cross section we are able to open the parameter space and find wide regions consistent with both the observed relic density and all the current bounds.

A preprint version of the article is available at ArXiv.


  1. [1]

    C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].

  2. [2]

    Y.G. Kim and K.Y. Lee, The minimal model of fermionic dark matter, Phys. Rev. D 75 (2007) 115012 [hep-ph/0611069] [INSPIRE].

  3. [3]

    XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

  4. [4]

    A. Berlin, S. Gori, T. Lin and L.-T. Wang, Pseudoscalar portal dark matter, Phys. Rev. D 92 (2015) 015005 [arXiv:1502.06000] [INSPIRE].

  5. [5]

    N.F. Bell, G. Busoni and I.W. Sanderson, Self-consistent dark matter simplified models with an s-channel scalar mediator, JCAP 03 (2017) 015 [arXiv:1612.03475] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    N.F. Bell, G. Busoni and I.W. Sanderson, Two Higgs doublet dark matter portal, JCAP 01 (2018) 015 [arXiv:1710.10764] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    G. Arcadi, M. Lindner, F.S. Queiroz, W. Rodejohann and S. Vogl, Pseudoscalar mediators: a WIMP model at the neutrino floor, JCAP 03 (2018) 042 [arXiv:1711.02110] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    S. Baum, M. Carena, N.R. Shah and C.E.M. Wagner, Higgs portals for thermal dark matter. EFT perspectives and the NMSSM, JHEP 04 (2018) 069 [arXiv:1712.09873] [INSPIRE].

  9. [9]

    M. Bauer, M. Klassen and V. Tenorth, Universal properties of pseudoscalar mediators in dark matter extensions of 2HDMs, JHEP 07 (2018) 107 [arXiv:1712.06597] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    J. Bernon, J.F. Gunion, H.E. Haber, Y. Jiang and S. Kraml, Scrutinizing the alignment limit in two-Higgs-doublet models: mh = 125 GeV, Phys. Rev. D 92 (2015) 075004 [arXiv:1507.00933] [INSPIRE].

  11. [11]

    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  12. [12]

    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  13. [13]

    ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [Erratum ibid. 734 (2014) 406] [arXiv:1307.1427] [INSPIRE].

  14. [14]

    CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 06 (2013) 081 [arXiv:1303.4571] [INSPIRE].

  15. [15]

    CMS collaboration, Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at \( \sqrt{s} \) = 13 TeV, JHEP 11 (2017) 047 [arXiv:1706.09936] [INSPIRE].

  16. [16]

    ATLAS collaboration, Measurement of the Higgs boson mass in the HZZ* → 4ℓ and Hγγ channels with \( \sqrt{s} \) = 13 TeV pp collisions using the ATLAS detector, Phys. Lett. B 784 (2018) 345 [arXiv:1806.00242] [INSPIRE].

  17. [17]

    P. Tuzon and A. Pich, The aligned two-Higgs doublet model, Acta Phys. Polon. Supp. 3 (2010) 215 [arXiv:1001.0293] [INSPIRE].

    MATH  Google Scholar 

  18. [18]

    M. Jung, A. Pich and P. Tuzon, Charged-Higgs phenomenology in the aligned two-Higgs-doublet model, JHEP 11 (2010) 003 [arXiv:1006.0470] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    T. Enomoto and R. Watanabe, Flavor constraints on the two Higgs doublet models of Z2 symmetric and aligned types, JHEP 05 (2016) 002 [arXiv:1511.05066] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  22. [22]

    N.D. Christensen et al., A comprehensive approach to new physics simulations, Eur. Phys. J. C 71 (2011) 1541 [arXiv:0906.2474] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    C. Degrande, Automatic evaluation of UV and R2 terms for beyond the Standard Model Lagrangians: a proof-of-principle, Comput. Phys. Commun. 197 (2015) 239 [arXiv:1406.3030] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].

  25. [25]

    F. Feroz and M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008) 449 [arXiv:0704.3704] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601 [arXiv:0809.3437] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    F. Feroz, M.P. Hobson, E. Cameron and A.N. Pettitt, Importance nested sampling and the MultiNest algorithm, Open J. Astrophys. 2 (2019) 10 [arXiv:1306.2144] [INSPIRE].

    Article  Google Scholar 

  28. [28]

    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [INSPIRE].

  29. [29]

    D.G. Cerdeño, A. Cheek, E. Reid and H. Schulz, Surrogate models for direct dark matter detection, JCAP 08 (2018) 011 [arXiv:1802.03174] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    XENON collaboration, Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T, Phys. Rev. Lett. 122 (2019) 141301 [arXiv:1902.03234] [INSPIRE].

  31. [31]

    Fermi-LAT and DES collaborations, Searching for dark matter annihilation in recently discovered milky way satellites with Fermi-LAT, Astrophys. J. 834 (2017) 110 [arXiv:1611.03184] [INSPIRE].

  32. [32]

    LSST Dark Matter Group collaboration, Probing the fundamental nature of dark matter with the Large Synoptic Survey Telescope, arXiv:1902.01055 [INSPIRE].

  33. [33]

    CTA collaboration, Pre-construction estimates of the Cherenkov Telescope Array sensitivity to a dark matter signal from the galactic centre, arXiv:2007.16129 [INSPIRE].

Download references

Author information



Corresponding author

Correspondence to S. Robles.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2011.09101

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cabrera, M.E., Casas, J.A., Delgado, A. et al. 2HDM singlet portal to dark matter. J. High Energ. Phys. 2021, 123 (2021). https://doi.org/10.1007/JHEP01(2021)123

Download citation


  • Cosmology of Theories beyond the SM
  • Beyond Standard Model