Witten effect, anomaly inflow, and charge teleportation

Abstract

We study a phenomenon that electric charges are “teleported” between two spatially separated objects without exchanging charged particles at all. For example, this phenomenon happens between a magnetic monopole and an axion string in four dimensions, two vortices in three dimensions, and two M5-branes in M-theory in which M2-charges are teleported. This is realized by anomaly inflow into these objects in the presence of cubic Chern-Simons terms. In particular, the Witten effect on magnetic monopoles can be understood as a general consequence of anomaly inflow, which implies that some anomalous quantum mechanics must live on them. Charge violation occurs in the anomalous theories living on these objects, but it happens in such a way that the total charge is conserved between the two spatially separated objects. We derive a formula for the amount of the charge which is teleported between the two objects in terms of the linking number of their world volumes in spacetime.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    E. Witten, Dyons of Charge eθ/2π, Phys. Lett. B 86 (1979) 283 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    Y. Hidaka, M. Nitta and R. Yokokura, Higher-form symmetries and 3-group in axion electrodynamics, Phys. Lett. B 808 (2020) 135672 [arXiv:2006.12532] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  3. [3]

    Y. Hidaka, M. Nitta and R. Yokokura, Global 3-group symmetry and ’t Hooft anomalies in axion electrodynamics, arXiv:2009.14368 [INSPIRE].

  4. [4]

    C.G. Callan Jr. and J.A. Harvey, Anomalies and Fermion Zero Modes on Strings and Domain Walls, Nucl. Phys. B 250 (1985) 427 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    M. Bucher, H.-K. Lo and J. Preskill, Topological approach to Alice electrodynamics, Nucl. Phys. B 386 (1992) 3 [hep-th/9112039] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    R. Sato, F. Takahashi and M. Yamada, Unified Origin of Axion and Monopole Dark Matter, and Solution to the Domain-wall Problem, Phys. Rev. D 98 (2018) 043535 [arXiv:1805.10533] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    C. Córdova, D.S. Freed, H.T. Lam and N. Seiberg, Anomalies in the Space of Coupling Constants and Their Dynamical Applications I, SciPost Phys. 8 (2020) 001 [arXiv:1905.09315] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    A.M. Polyakov, Fermi-Bose Transmutations Induced by Gauge Fields, Mod. Phys. Lett. A 3 (1988) 325 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    G.T. Horowitz and M. Srednicki, A Quantum Field Theoretic Description of Linking Numbers and Their Generalization, Commun. Math. Phys. 130 (1990) 83 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    E. Witten, On flux quantization in M-theory and the effective action, J. Geom. Phys. 22 (1997) 1 [hep-th/9609122] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    E. Witten, World sheet corrections via D instantons, JHEP 02 (2000) 030 [hep-th/9907041] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    E. Witten, The “Parity” Anomaly On An Unorientable Manifold, Phys. Rev. B 94 (2016) 195150 [arXiv:1605.02391] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    Y. Tachikawa and K. Yonekura, Why are fractional charges of orientifolds compatible with Dirac quantization?, SciPost Phys. 7 (2019) 058 [arXiv:1805.02772] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    C.-T. Hsieh, Y. Tachikawa and K. Yonekura, Anomaly inflow and p-form gauge theories, arXiv:2003.11550 [INSPIRE].

  16. [16]

    E. Witten, On S duality in Abelian gauge theory, Selecta Math. 1 (1995) 383 [hep-th/9505186] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  17. [17]

    D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, Time Reversal, and Temperature, JHEP 05 (2017) 091 [arXiv:1703.00501] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    Y. Kikuchi and Y. Tanizaki, Global inconsistency, ’t Hooft anomaly, and level crossing in quantum mechanics, PTEP 2017 (2017) 113B05 [arXiv:1708.01962] [INSPIRE].

  19. [19]

    J.A. Harvey, Magnetic monopoles, duality and supersymmetry, in ICTP Summer School in High-energy Physics and Cosmology, Trieste Italy (1995) [hep-th/9603086] [INSPIRE].

  20. [20]

    W.A. Bardeen and B. Zumino, Consistent and Covariant Anomalies in Gauge and Gravitational Theories, Nucl. Phys. B 244 (1984) 421 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    S.G. Naculich, Axionic Strings: Covariant Anomalies and Bosonization of Chiral Zero Modes, Nucl. Phys. B 296 (1988) 837 [INSPIRE].

  22. [22]

    D. Freed, J.A. Harvey, R. Minasian and G.W. Moore, Gravitational anomaly cancellation for M-theory five-branes, Adv. Theor. Math. Phys. 2 (1998) 601 [hep-th/9803205] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  23. [23]

    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    P. Sikivie, On the Interaction of Magnetic Monopoles With Axionic Domain Walls, Phys. Lett. B 137 (1984) 353 [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hajime Fukuda.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2010.02221

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fukuda, H., Yonekura, K. Witten effect, anomaly inflow, and charge teleportation. J. High Energ. Phys. 2021, 119 (2021). https://doi.org/10.1007/JHEP01(2021)119

Download citation

Keywords

  • Anomalies in Field and String Theories
  • Topological Field Theories