Symplectic realization of two interacting spin-two fields in three dimensions

Abstract

We constructed a symplectic realization of the dynamic structure of two interacting spin-two fields in three dimensions. A significant simplification refers to the treatment of constraints: instead of performing a Hamiltonian analysis à la Dirac, we worked out a method that only uses properties of the pre-symplectic two-form matrix and its corresponding zero-modes to investigate the nature of constraints and the gauge structure of the theory. For instance, we demonstrate that the contraction of the zero-modes with the potential gradient, yields explicit expressions for the whole set of constraints on the dynamics of the theory, including the symmetrization condition and an explicit relationship between the coupling and cosmological constants. This way, we further identify the necessary conditions for the existence of a unique non-linear candidate for a partially massless theory, using only the expression for the interaction parameters of the model. In the case of gauge structure, the transformation laws for the entire set of dynamical variables are more straightforwardly derived from the structure of the remaining zero-modes; in this sense, the zero-modes must be viewed as the generators of the corresponding gauge transformations. Thereafter, we use an appropriate gauge-fixing procedure, the time gauge, to compute both the quantization brackets and the functional measure on the path integral associated with our model. Finally, we confirm that three-dimensional bi-gravity has two physical degrees of freedom per space point. With the above, we provide a new perspective for a better understanding of the dynamical structure of theories of interacting spin-two fields, which does not require the constraints to be catalogued as first- and second-class ones as in the case of Dirac’s standard method.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    A. Einstein, The foundation of the general theory of relativity, Annalen Phys. 49 (1916) 769822.

    Google Scholar 

  2. [2]

    G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].

  3. [3]

    J. Frieman, M. Turner and D. Huterer, Dark Energy and the Accelerating Universe, Ann. Rev. Astron. Astrophys. 46 (2008) 385 [arXiv:0803.0982] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    E.W. Kolb and M.S. Turner, The Early Universe, Front. Phys. 69 (1990) 1 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  5. [5]

    R. Durrer and R. Maartens, Dark Energy and Dark Gravity, Gen. Rel. Grav. 40 (2008) 301328.

    MathSciNet  MATH  Article  Google Scholar 

  6. [6]

    T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Modified Gravity and Cosmology, Phys. Rept. 513 (2012) 1 [arXiv:1106.2476] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    G. t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Annales Poincaré Phys. Theor. A 20 (1974) 69.

  8. [8]

    E. Witten, (2+1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B 311 (1988) 46 [INSPIRE].

  9. [9]

    A. Maloney and E. Witten, Quantum Gravity Partition Functions in Three Dimensions, JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  10. [10]

    J. Kim and M. Porrati, On a Canonical Quantization of 3D Anti de Sitter Pure Gravity, JHEP 10 (2015) 096 [arXiv:1508.03638] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  13. [13]

    D. Lovelock, The four-dimensionality of space and the Einstein tensor, J. Math. Phys. 13 (1972) 874 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  14. [14]

    F. Dyson, Is a graviton detectable?, Int. J. Mod. Phys. A 28 (2013) 1330041 [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    S. Weinberg, The quantum theory of fields. Vol. 1: Foundations, Cambridge University Press, U.K. (1995).

  16. [16]

    A.S. Goldhaber and M.M. Nieto, Photon and Graviton Mass Limits, Rev. Mod. Phys. 82 (2010) 939 [arXiv:0809.1003] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    K. Hinterbichler and R.A. Rosen, Interacting Spin-2 Fields, JHEP 07 (2012) 047 [arXiv:1203.5783] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  18. [18]

    C. Deffayet, J. Mourad and G. Zahariade, A note on ‘symmetric’ vielbeins in bimetric, massive, perturbative and non perturbative gravities, JHEP 03 (2013) 086 [arXiv:1208.4493] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  19. [19]

    E. Babichev et al., Bigravitational origin of dark matter, Phys. Rev. D 94 (2016) 084055 [arXiv:1604.08564] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    E. Babichev et al., Heavy spin-2 Dark Matter, JCAP 09 (2016) 016 [arXiv:1607.03497] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    X. Chu and C. Garcia-Cely, Self-interacting Spin-2 Dark Matter, Phys. Rev. D 96 (2017) 103519 [arXiv:1708.06764] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    I. Oda, Renormalizability of Massive Gravity in Three Dimensions, JHEP 05 (2009) 064 [arXiv:0904.2833] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli Action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    C. de Rham, G. Gabadadze and A.J. Tolley, Ghost free Massive Gravity in the Stúckelberg language, Phys. Lett. B 711 (2012) 190 [arXiv:1107.3820] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    S.F. Hassan and R.A. Rosen, Resolving the Ghost Problem in non-Linear Massive Gravity, Phys. Rev. Lett. 108 (2012) 041101 [arXiv:1106.3344] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    S.F. Hassan, R.A. Rosen and A. Schmidt-May, Ghost-free Massive Gravity with a General Reference Metric, JHEP 02 (2012) 026 [arXiv:1109.3230] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  28. [28]

    S.F. Hassan, A. Schmidt-May and M. von Strauss, Metric Formulation of Ghost-Free Multivielbein Theory, arXiv:1204.5202 [INSPIRE].

  29. [29]

    D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    S.F. Hassan and R.A. Rosen, Bimetric Gravity from Ghost-free Massive Gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  31. [31]

    S.F. Hassan and A. Lundkvist, Analysis of constraints and their algebra in bimetric theory, JHEP 08 (2018) 182 [arXiv:1802.07267] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  32. [32]

    S.F. Hassan and R.A. Rosen, Confirmation of the Secondary Constraint and Absence of Ghost in Massive Gravity and Bimetric Gravity, JHEP 04 (2012) 123 [arXiv:1111.2070] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  33. [33]

    L. Bernard, C. Deffayet, K. Hinterbichler and M. von Strauss, Partially Massless Graviton on Beyond Einstein Spacetimes, Phys. Rev. D 95 (2017) 124036 [Erratum ibid. 98 (2018) 069902] [arXiv:1703.02538] [INSPIRE].

  34. [34]

    S.F. Hassan, A. Schmidt-May and M. von Strauss, Bimetric theory and partial masslessness with Lanczos-Lovelock terms in arbitrary dimensions, Class. Quant. Grav. 30 (2013) 184010 [arXiv:1212.4525] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  35. [35]

    S. Deser and A. Waldron, Gauge invariances and phases of massive higher spins in (A)dS, Phys. Rev. Lett. 87 (2001) 031601 [hep-th/0102166] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nucl. Phys. B 607 (2001) 577 [hep-th/0103198] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  37. [37]

    S. Deser and A. Waldron, Stability of massive cosmological gravitons, Phys. Lett. B 508 (2001) 347 [hep-th/0103255] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  38. [38]

    A. Higuchi, Forbidden Mass Range for Spin-2 Field Theory in de Sitter Space-time, Nucl. Phys. B 282 (1987) 397 [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, Beyond Positivity Bounds and the Fate of Massive Gravity, Phys. Rev. Lett. 120 (2018) 161101 [arXiv:1710.02539] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    F.D.M. Haldane, Geometrical Description of the Fractional Quantum Hall Effect, Phys. Rev. Lett. 107 (2011) 116801 [arXiv:1106.3375] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    A. Gromov and B. Bradlyn, Investigating Anisotropic Quantum Hall States with Bimetric Geometry, Phys. Rev. Lett. 119 (2017) 146602 [Addendum ibid. 119 (2017) 189901] [Addendum ibid. 120 (2018) 089902] [arXiv:1703.01304] [INSPIRE].

  42. [42]

    A. Gromov and D.T. Son, Bimetric Theory of Fractional Quantum Hall States, Phys. Rev. X 7 (2017) 041032 [Addendum ibid. 8 (2018) 019901] [arXiv:1705.06739] [INSPIRE].

  43. [43]

    E.A. Bergshoeff, S. de Haan, O. Hohm, W. Merbis and P.K. Townsend, Zwei-Dreibein Gravity: A Two-Frame-Field Model of 3D Massive Gravity, Phys. Rev. Lett. 111 (2013) 111102 [Erratum ibid. 111 (2013) 259902] [arXiv:1307.2774] [INSPIRE].

  44. [44]

    H.R. Afshar, E.A. Bergshoeff and W. Merbis, Interacting spin-2 fields in three dimensions, JHEP 01 (2015) 040 [arXiv:1410.6164] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  45. [45]

    M. Bañados, C. Deffayet and M. Pino, The Boulware-Deser mode in 3D first-order massive gravity, Phys. Rev. D 88 (2013) 124016 [arXiv:1310.3249] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    A. Ashtekar, New Hamiltonian Formulation of General Relativity, Phys. Rev. D 36 (1987) 1587 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  47. [47]

    P. Peldán, Ashtekar’s variables for arbitrary gauge group, Phys. Rev. D 46 (1992) 2279 [hep-th/9204069] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  48. [48]

    P.A.M. Dirac, Lectures on quantum mechanics, vol. 2 of Belfer Graduate School of Science Monographs Series, Belfer Graduate School of Science, New York, U.S.A. (1964).

  49. [49]

    M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton, Princeton University Press, New Jersey, U.S.A. (1991).

    Google Scholar 

  50. [50]

    T. Regge and C. Teitelboim, Role of Surface Integrals in the Hamiltonian Formulation of General Relativity, Annals Phys. 88 (1974) 286 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  51. [51]

    J. Kluson, Is Bimetric Gravity Really Ghost Free?, Int. J. Mod. Phys. A 28 (2013) 1350143 [arXiv:1301.3296] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  52. [52]

    J. Kluson, Hamiltonian Formalism of General Bimetric Gravity, Eur. Phys. J. C 73 (2013) 2553 [arXiv:1303.1652] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    J. Kluson, Note About Hamiltonian Structure of Non-Linear Massive Gravity, JHEP 01 (2012) 013 [arXiv:1109.3052] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  54. [54]

    S. Alexandrov, Canonical structure of Tetrad Bimetric Gravity, Gen. Rel. Grav. 46 (2014) 1639 [arXiv:1308.6586] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  55. [55]

    L.D. Faddeev and R. Jackiw, Hamiltonian Reduction of Unconstrained and Constrained Systems, Phys. Rev. Lett. 60 (1988) 1692 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  56. [56]

    J. Barcelos-Neto and C. Wotzasek, Symplectic quantization of constrained systems, Mod. Phys. Lett. A 7 (1992) 1737 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  57. [57]

    J. Barcelos-Neto and C. Wotzasek, Faddeev-Jackiw quantization and constraints, Int. J. Mod. Phys. A 7 (1992) 4981 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  58. [58]

    H. Montani and R. Montemayor, Lagrangian approach to a symplectic formalism for singular systems, Phys. Rev. D 58 (1998) 125018 [hep-th/9805024] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  59. [59]

    D.J. Toms, Faddeev-Jackiw quantization and the path integral, Phys. Rev. D 92 (2015) 105026 [arXiv:1508.07432] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  60. [60]

    O. Rodríguez-Tzompantzi and A. Escalante, Gauge symmetry and constraints structure for topologically massive AdS gravity: a symplectic viewpoint, Eur. Phys. J. C 78 (2018) 369 [arXiv:1702.05540] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    A. Escalante and O. Rodríguez-Tzompantzi, On the Faddeev-Jackiw symplectic framework for topologically massive gravity, Eur. Phys. J. C 76 (2016) 577 [arXiv:1601.04561] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    S.F. Hassan and M. Kocic, On the local structure of spacetime in ghost-free bimetric theory and massive gravity, JHEP 05 (2018) 099 [arXiv:1706.07806] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  63. [63]

    R. Utiyama, Invariant theoretical interpretation of interaction, Phys. Rev. 101 (1956) 1597 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  64. [64]

    F.W. Hehl, P. Von Der Heyde, G.D. Kerlick and J.M. Nester, General Relativity with Spin and Torsion: Foundations and Prospects, Rev. Mod. Phys. 48 (1976) 393 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  65. [65]

    M. Blagojevic, Gravitation and gauge symmetries, IoP Publishing, Bristol, U.K. (2002).

    Google Scholar 

  66. [66]

    T. Ortín, Gravity and strings, Cambridge University Press (2004).

  67. [67]

    S. Carlip, The Constraint Algebra of Topologically Massive AdS Gravity, JHEP 10 (2008) 078 [arXiv:0807.4152] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Omar Rodríguez-Tzompantzi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2005.00073

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Tzompantzi, O. Symplectic realization of two interacting spin-two fields in three dimensions. J. High Energ. Phys. 2021, 89 (2021). https://doi.org/10.1007/JHEP01(2021)089

Download citation

Keywords

  • Classical Theories of Gravity
  • Field Theories in Lower Dimensions
  • Gauge Symmetry
  • Space-Time Symmetries