Emergent supersymmetry in local equilibrium systems

Open Access
Regular Article - Theoretical Physics


Many physical processes we observe in nature involve variations of macroscopic quantities over spatial and temporal scales much larger than microscopic molecular collision scales and can be considered as in local thermal equilibrium. In this paper we show that any classical statistical system in local thermal equilibrium has an emergent supersymmetry at low energies. We use the framework of non-equilibrium effective field theory for quantum many-body systems defined on a closed time path contour and consider its classical limit. Unitarity of time evolution requires introducing anti-commuting degrees of freedom and BRST symmetry which survive in the classical limit. The local equilibrium is realized through a Z2 dynamical KMS symmetry. We show that supersymmetry is equivalent to the combination of BRST and a specific consequence of the dynamical KMS symmetry, to which we refer as the special dynamical KMS condition. In particular, we prove a theorem stating that a system satisfying the special dynamical KMS condition is always supersymmetrizable. We discuss a number of examples explicitly, including model A for dynamical critical phenomena, a hydrodynamic theory of nonlinear diffusion, and fluctuating hydrodynamics for relativistic charged fluids.


Effective Field Theories Quantum Dissipative Systems Supersymmetric Effective Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407 [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  2. [2]
    J.S. Schwinger, Particles and sources, volume I, Addison-Wesley, Cambridge MA U.S.A., (1970) [INSPIRE].
  3. [3]
    J.S. Schwinger, Particles and sources, volume II, Addison-Wesley, Cambridge MA U.S.A., (1973) [INSPIRE].
  4. [4]
    J.S. Schwinger, Particles and sources, volume III, Addison-Wesley, Cambridge MA U.S.A., (1989) [INSPIRE].
  5. [5]
    L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [Sov. Phys. JETP 20 (1965) 1018] [INSPIRE].
  6. [6]
    R.P. Feynman and F.L. Vernon, Jr., The theory of a general quantum system interacting with a linear dissipative system, Annals Phys. 24 (1963) 118 [Annals Phys. 281 (2000) 547] [INSPIRE].
  7. [7]
    K.-C. Chou, Z.-B. Su, B.-L. Hao and L. Yu, Equilibrium and nonequilibrium formalisms made unified, Phys. Rept. 118 (1985) 1 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    E. Wang and U.W. Heinz, A generalized fluctuation dissipation theorem for nonlinear response functions, Phys. Rev. D 66 (2002) 025008 [hep-th/9809016] [INSPIRE].
  9. [9]
    P. Glorioso and H. Liu, The second law of thermodynamics from symmetry and unitarity, arXiv:1612.07705 [INSPIRE].
  10. [10]
    M. Crossley, P. Glorioso and H. Liu, Effective field theory of dissipative fluids, JHEP 09 (2017) 095 [arXiv:1511.03646] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  11. [11]
    P. Glorioso, M. Crossley and H. Liu, Effective field theory of dissipative fluids (II): classical limit, dynamical KMS symmetry and entropy current, JHEP 09 (2017) 096 [arXiv:1701.07817] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  12. [12]
    S. Grozdanov and J. Polonyi, Viscosity and dissipative hydrodynamics from effective field theory, Phys. Rev. D 91 (2015) 105031 [arXiv:1305.3670] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    P. Kovtun, G.D. Moore and P. Romatschke, Towards an effective action for relativistic dissipative hydrodynamics, JHEP 07 (2014) 123 [arXiv:1405.3967] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    M. Harder, P. Kovtun and A. Ritz, On thermal fluctuations and the generating functional in relativistic hydrodynamics, JHEP 07 (2015) 025 [arXiv:1502.03076] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  15. [15]
    F.M. Haehl, R. Loganayagam and M. Rangamani, Adiabatic hydrodynamics: the eightfold way to dissipation, JHEP 05 (2015) 060 [arXiv:1502.00636] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  16. [16]
    F.M. Haehl, R. Loganayagam and M. Rangamani, The fluid manifesto: emergent symmetries, hydrodynamics and black holes, JHEP 01 (2016) 184 [arXiv:1510.02494] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  17. [17]
    F.M. Haehl, R. Loganayagam and M. Rangamani, Topological σ-models & dissipative hydrodynamics, JHEP 04 (2016) 039 [arXiv:1511.07809] [INSPIRE].MathSciNetMATHADSGoogle Scholar
  18. [18]
    L.M. Sieberer, M. Buchhold and S. Diehl, Keldysh field theory for driven open quantum systems, Rept. Prog. Phys. 79 (2016) 096001 [arXiv:1512.00637] [INSPIRE].
  19. [19]
    P.C. Martin, E.D. Siggia and H.A. Rose, Statistical dynamics of classical systems, Phys. Rev. A 8 (1973) 423 [INSPIRE].
  20. [20]
    J. DeDominicis, Techniques de renormalisation de la théorie des champs et dynamique des phénomènes critiques (in French), J. Phys. Colloques 37 (1976) C1-247.Google Scholar
  21. [21]
    H. Janssen, On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties, Z. Phys. B 23 (1976) 377.ADSGoogle Scholar
  22. [22]
    A. Kamenev, Field theory of non-equilibrium systems, Cambridge University Press, Cambridge U.K., (2011).Google Scholar
  23. [23]
    J. Zinn-Justin, Quantum field theory and critical phenomena, Clarendon Press, Oxford U.K., (2002).Google Scholar
  24. [24]
    F.M. Haehl, R. Loganayagam and M. Rangamani, Schwinger-Keldysh formalism. Part I: BRST symmetries and superspace, JHEP 06 (2017) 069 [arXiv:1610.01940] [INSPIRE].
  25. [25]
    R. Kubo, Statistical-mechanical theory of irreversible processes I. General theory and simple applications to magnetic and conduction problems, J. Math. Soc. Jpn. 12 (1957) 570.MathSciNetADSGoogle Scholar
  26. [26]
    P.C. Martin and J.S. Schwinger, Theory of many particle systems. 1, Phys. Rev. 115 (1959) 1342 [INSPIRE].
  27. [27]
    L.P. Kadanoff and P.C. Martin, Hydrodynamic equations and correlation functions, Ann. Phys. 24 (1963) 419.MathSciNetCrossRefMATHADSGoogle Scholar
  28. [28]
    R. Bausch, H.K. Janssen and H. Wagner, Renormalized field theory of critical dynamics, Z. Phys. B 24 (1976) 113.Google Scholar
  29. [29]
    L.M. Sieberer, A. Chiocchetta, A. Gambassi, U.C. Täuber and S. Diehl, Thermodynamic equilibrium as a symmetry of the Schwinger-Keldysh action, Phys. Rev. B 92 (2015) 134307 [arXiv:1505.00912] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    G. Parisi and N. Sourlas, Random magnetic fields, supersymmetry and negative dimensions, Phys. Rev. Lett. 43 (1979) 744 [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    M.V. Feigelman and A.M. Tsvelik, On the hidden supersymmetry of Fokker-Planck equations with potential forces, Phys. Lett. A 95 (1983) 469 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  32. [32]
    E. Gozzi, The Onsager’s principle of microscopic reversibility and supersymmetry, Phys. Rev. D 30 (1984) 1218 [Erratum ibid. D 31 (1985) 441] [INSPIRE].
  33. [33]
    K. Mallick, M. Moshe and H. Orland, A field-theoretic approach to nonequilibrium work identities, J. Phys. A 44 (2011) 095002 [arXiv:1009.4800] [INSPIRE].
  34. [34]
    F.M. Haehl, R. Loganayagam and M. Rangamani, Schwinger-Keldysh formalism. Part II: thermal equivariant cohomology, JHEP 06 (2017) 070 [arXiv:1610.01941] [INSPIRE].
  35. [35]
    K. Jensen, N. Pinzani-Fokeeva and A. Yarom, Dissipative hydrodynamics in superspace, arXiv:1701.07436 [INSPIRE].
  36. [36]
    P.C. Hohenberg and B.I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49 (1977) 435 [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    R. Folk and H.-G. Moser, Critical dynamics: a field-theoretical approach, J. Phys. A 39 (2006) R207 [INSPIRE].
  38. [38]
    J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A., (1992).Google Scholar
  39. [39]
    E. Briand, When is the algebra of multisymmetric polynomials generated by the elementary multisymmetric polynomials?, Contrib. Alg. Geom. 45 (2004) 353.MathSciNetMATHGoogle Scholar
  40. [40]
    J. Dalbec, Multisymmetric functions, Beiträge Alg. Geom. 40 (1999) 27.Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Center for the Fundamental Laws of NatureHarvard UniversityCambridgeU.S.A.
  2. 2.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations