Advertisement

Probing light-quark Yukawa couplings via hadronic event shapes at lepton colliders

Open Access
Regular Article - Theoretical Physics

Abstract

We propose a novel idea for probing the Higgs boson couplings through the measurement of hadronic event shape distributions in the decay of the Higgs boson at lepton colliders. The method provides a unique test of the Higgs boson couplings and of QCD effects in the decay of the Higgs boson. It can be used to probe the Yukawa couplings of the light quarks and to further test the mechanism of electroweak symmetry breaking. From a case study for the proposed Circular Electron-Positron Collider, assuming a hypothesis of SM-like theory, light-quark couplings with a strength greater than 9% of the bottom-quark Yukawa coupling in the standard model can be excluded.

Keywords

QCD Phenomenology Jets 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  2. [2]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  3. [3]
    S. Dawson et al., Working group report: Higgs boson, arXiv:1310.8361 [INSPIRE].
  4. [4]
    CEPC-SPPC study group, CEPC-SPPC preliminary conceptual design report 1. Physics and detector, IHEP-CEPC-DR-2015-01, China, (2015) [IHEP-TH-2015-01] [IHEP-EP-2015-01] [INSPIRE].
  5. [5]
    G.F. Giudice and O. Lebedev, Higgs-dependent Yukawa couplings, Phys. Lett. B 665 (2008) 79 [arXiv:0804.1753] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    F. Bishara, J. Brod, P. Uttayarat and J. Zupan, Nonstandard Yukawa couplings and Higgs portal dark matter, JHEP 01 (2016) 010 [arXiv:1504.04022] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Gao, Differentiating the production mechanisms of the Higgs-like resonance using inclusive observables at hadron colliders, JHEP 02 (2014) 094 [arXiv:1308.5453] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    F. Bishara, U. Haisch, P.F. Monni and E. Re, Constraining light-quark Yukawa couplings from Higgs distributions, Phys. Rev. Lett. 118 (2017) 121801 [arXiv:1606.09253] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    Y. Soreq, H.X. Zhu and J. Zupan, Light quark Yukawa couplings from Higgs kinematics, JHEP 12 (2016) 045 [arXiv:1606.09621] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G.T. Bodwin, F. Petriello, S. Stoynev and M. Velasco, Higgs boson decays to quarkonia and the \( H\overline{c}c \) coupling, Phys. Rev. D 88 (2013) 053003 [arXiv:1306.5770] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A.L. Kagan, G. Perez, F. Petriello, Y. Soreq, S. Stoynev and J. Zupan, Exclusive window onto Higgs Yukawa couplings, Phys. Rev. Lett. 114 (2015) 101802 [arXiv:1406.1722] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    Y. Zhou, Constraining the Higgs boson coupling to light quarks in the HZZ final states, Phys. Rev. D 93 (2016) 013019 [arXiv:1505.06369] [INSPIRE].ADSGoogle Scholar
  13. [13]
    M. König and M. Neubert, Exclusive radiative Higgs decays as probes of light-quark Yukawa couplings, JHEP 08 (2015) 012 [arXiv:1505.03870] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    G. Perez, Y. Soreq, E. Stamou and K. Tobioka, Prospects for measuring the Higgs boson coupling to light quarks, Phys. Rev. D 93 (2016) 013001 [arXiv:1505.06689] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A.S. Chisholm, S. Kuttimalai, K. Nikolopoulos and M. Spannowsky, Measuring rare and exclusive Higgs boson decays into light resonances, Eur. Phys. J. C 76 (2016) 501 [arXiv:1606.09177] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J.R. Andersen et al., Les Houches 2015: physics at TeV colliders Standard Model working group report, arXiv:1605.04692 [INSPIRE].
  17. [17]
    C. Englert, M. Spannowsky and M. Takeuchi, Measuring Higgs CP and couplings with hadronic event shapes, JHEP 06 (2012) 108 [arXiv:1203.5788] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C. Englert, D. Goncalves, G. Nail and M. Spannowsky, The shape of spins, Phys. Rev. D 88 (2013) 013016 [arXiv:1304.0033] [INSPIRE].ADSGoogle Scholar
  19. [19]
    OPAL collaboration, G. Abbiendi et al., Measurement of event shape distributions and moments in e + e hadrons at 91 GeV-209 GeV and a determination of α s, Eur. Phys. J. C 40 (2005) 287 [hep-ex/0503051] [INSPIRE].
  20. [20]
    ALEPH collaboration, A. Heister et al., Studies of QCD at e + e centre-of-mass energies between 91 GeV and 209 GeV, Eur. Phys. J. C 35 (2004) 457 [INSPIRE].
  21. [21]
    A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, A general method for the resummation of event-shape distributions in e + e annihilation, JHEP 05 (2015) 102 [arXiv:1412.2126] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, The two-jet rate in e + e at next-to-next-to-leading-logarithmic order, Phys. Rev. Lett. 117 (2016) 172001 [arXiv:1607.03111] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    T. Becher and M.D. Schwartz, A precise determination of α s from LEP thrust data using effective field theory, JHEP 07 (2008) 034 [arXiv:0803.0342] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with power corrections and a precision global fit for α s(m Z), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A.H. Hoang, D.W. Kolodrubetz, V. Mateu and I.W. Stewart, C-parameter distribution at N 3 LL’ including power corrections, Phys. Rev. D 91 (2015) 094017 [arXiv:1411.6633] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett. 99 (2007) 132002 [arXiv:0707.1285] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    V. Del Duca et al., Jet production in the CoLoRFulNNLO method: event shapes in electron-positron collisions, Phys. Rev. D 94 (2016) 074019 [arXiv:1606.03453] [INSPIRE].ADSGoogle Scholar
  28. [28]
    L. Lönnblad, ARIADNE version 4: a program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun. 71 (1992) 15 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
  30. [30]
    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  32. [32]
    S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].
  33. [33]
    R.W.L. Jones, M. Ford, G.P. Salam, H. Stenzel and D. Wicke, Theoretical uncertainties on α s from event shape variables in e + e annihilations, JHEP 12 (2003) 007 [hep-ph/0312016] [INSPIRE].
  34. [34]
    G. Dissertori et al., Determination of the strong coupling constant using matched NNLO+NLLA predictions for hadronic event shapes in e + e annihilations, JHEP 08 (2009) 036 [arXiv:0906.3436] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
  36. [36]
    J.-C. Winter, F. Krauss and G. Soff, A modified cluster hadronization model, Eur. Phys. J. C 36 (2004) 381 [hep-ph/0311085] [INSPIRE].
  37. [37]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  38. [38]
    Z. Chen et al., Cross section and Higgs mass measurement with Higgsstrahlung at the CEPC, Chin. Phys. C 41 (2017) 023003 [arXiv:1601.05352] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    LHC Higgs Cross section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
  40. [40]
    ATLAS collaboration, Performance of b-jet identification in the ATLAS experiment, 2016 JINST 11 P04008 [arXiv:1512.01094] [INSPIRE].
  41. [41]
    R. Manqi, Simulation, reconstruction and Higgs analysis at CEPC, talk given at Saclay discussion, (2015).Google Scholar
  42. [42]
    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].
  43. [43]
    A.L. Read, Modified frequentist analysis of search results (the CL s method), in Confidence limits, CERN-OPEN-2000-205, Geneva Switzerland, (2000), pg. 81.Google Scholar
  44. [44]
    M. Srednicki, Comment on “ambiguities in the up-quark mass”, Phys. Rev. Lett. 95 (2005) 059101 [hep-ph/0503051] [INSPIRE].
  45. [45]
    OPAL collaboration, G. Abbiendi et al., Determination of α s using OPAL hadronic event shapes at \( \sqrt{s}=91-209 \) GeV and resummed NNLO calculations, Eur. Phys. J. C 71 (2011) 1733 [arXiv:1101.1470] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and AstronomyShanghai Jiao-Tong UniversityShanghaiChina

Personalised recommendations