Advertisement

LHC search for right-handed neutrinos in Z models

  • Peter Cox
  • Chengcheng Han
  • Tsutomu T. Yanagida
Open Access
Regular Article - Theoretical Physics

Abstract

We consider right-handed neutrino pair production in generic Z models. We propose a new, model-independent analysis using final states containing a pair of same-sign muons. A key aspect of this analysis is the reconstruction of the RH neutrino mass, which leads to a significantly improved sensitivity. Within the \( \mathrm{U}{(1)_{\left(B-L\right)}}_{{}_3} \) model, we find that at the HL-LHC it will be possible to probe RH neutrino masses in the range \( 0.2\lesssim {M}_{N_R}\lesssim 1.1 \) TeV.

Keywords

Beyond Standard Model Gauge Symmetry Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  2. [2]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings: Workshop on the Unified Theories and the Baryon Number in the Universe, Tsukuba Japan, 13-14 February 1979 [Conf. Proc. C 7902131 (1979) 95] [INSPIRE].
  3. [3]
    S.L. Glashow, The future of elementary particle physics, in Cargese Summer Institute: Quarks and Leptons, Cargese France, 9-29 July 1979 [NATO Sci. Ser. B 61 (1980) 687] [INSPIRE].
  4. [4]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity Workshop, Stony Brook NY U.S.A., 27-28 September 1979 [Conf. Proc. C 790927 (1979) 315] [arXiv:1306.4669] [INSPIRE].
  5. [5]
    CMS collaboration, Search for heavy Majorana neutrinos in μ ± μ ±+ jets events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 748 (2015) 144 [arXiv:1501.05566] [INSPIRE].
  6. [6]
    ATLAS collaboration, Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 07 (2015) 162 [arXiv:1506.06020] [INSPIRE].
  7. [7]
    CMS collaboration, Search for heavy Majorana neutrinos in e ± e ±+ jets and e ± μ ±+ jets events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 04 (2016) 169 [arXiv:1603.02248] [INSPIRE].
  8. [8]
    CMS collaboration, Search for heavy neutrinos and W bosons with right handed couplings in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-16-045, CERN, Geneva Switzerland, (2016).
  9. [9]
    A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    F.F. Deppisch, P.S. Bhupal Dev and A. Pilaftsis, Neutrinos and collider physics, New J. Phys. 17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    J. Kersten and A. Yu. Smirnov, Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [INSPIRE].ADSGoogle Scholar
  12. [12]
    X.-G. He, S. Oh, J. Tandean and C.-C. Wen, Large mixing of light and heavy neutrinos in seesaw models and the LHC, Phys. Rev. D 80 (2009) 073012 [arXiv:0907.1607] [INSPIRE].ADSGoogle Scholar
  13. [13]
    A. Das and N. Okada, Bounds on heavy Majorana neutrinos in type-I seesaw and implications for collider searches, Phys. Lett. B 774 (2017) 32 [arXiv:1702.04668] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    W.-Y. Keung and G. Senjanović, Majorana neutrinos and the production of the right-handed charged gauge boson, Phys. Rev. Lett. 50 (1983) 1427 [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    W. Buchmüller and C. Greub, Heavy Majorana neutrinos in electron-positron and electron-proton collisions, Nucl. Phys. B 363 (1991) 345 [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    L. Basso, A. Belyaev, S. Moretti and C.H. Shepherd-Themistocleous, Phenomenology of the minimal B-L extension of the Standard Model: Z and neutrinos, Phys. Rev. D 80 (2009) 055030 [arXiv:0812.4313] [INSPIRE].Google Scholar
  17. [17]
    P. Fileviez Perez, T. Han and T. Li, Testability of type I seesaw at the CERN LHC: revealing the existence of the B-L symmetry, Phys. Rev. D 80 (2009) 073015 [arXiv:0907.4186] [INSPIRE].ADSGoogle Scholar
  18. [18]
    B. Batell, M. Pospelov and B. Shuve, Shedding light on neutrino masses with dark forces, JHEP 08 (2016) 052 [arXiv:1604.06099] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    J. Heeck and D. Teresi, Leptogenesis and neutral gauge bosons, Phys. Rev. D 94 (2016) 095024 [arXiv:1609.03594] [INSPIRE].ADSGoogle Scholar
  20. [20]
    L. Duarte, J. Peressutti and O.A. Sampayo, Not-that-heavy Majorana neutrino signals at the LHC, arXiv:1610.03894 [INSPIRE].
  21. [21]
    K. Huitu, S. Khalil, H. Okada and S.K. Rai, Signatures for right-handed neutrinos at the Large Hadron Collider, Phys. Rev. Lett. 101 (2008) 181802 [arXiv:0803.2799] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    Z. Kang, P. Ko and J. Li, New avenues to heavy right-handed neutrinos with pair production at hadronic colliders, Phys. Rev. D 93 (2016) 075037 [arXiv:1512.08373] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Mitra, R. Ruiz, D.J. Scott and M. Spannowsky, Neutrino jets from high-mass W R gauge bosons in TeV-scale left-right symmetric models, Phys. Rev. D 94 (2016) 095016 [arXiv:1607.03504] [INSPIRE].Google Scholar
  24. [24]
    O. Mattelaer, M. Mitra and R. Ruiz, Automated neutrino jet and top jet predictions at next-to-leading-order with parton shower matching in effective left-right symmetric models, arXiv:1610.08985 [INSPIRE].
  25. [25]
    ATLAS collaboration, Search for anomalous production of prompt same-sign lepton pairs and pair-produced doubly charged Higgs bosons with \( \sqrt{s}=8 \) TeV pp collisions using the ATLAS detector, JHEP 03 (2015) 041 [arXiv:1412.0237] [INSPIRE].
  26. [26]
    R. Alonso, P. Cox, C. Han and T.T. Yanagida, Flavoured B-L local symmetry and anomalous rare B decays, Phys. Lett. B 774 (2017) 643 [arXiv:1705.03858] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    P.H. Frampton, S.L. Glashow and T. Yanagida, Cosmological sign of neutrino CP-violation, Phys. Lett. B 548 (2002) 119 [hep-ph/0208157] [INSPIRE].
  29. [29]
    R. Alonso, P. Cox, C. Han and T.T. Yanagida, Anomaly-free local horizontal symmetry and anomaly-full rare B-decays, Phys. Rev. D 96 (2017) 071701 [arXiv:1704.08158] [INSPIRE].ADSGoogle Scholar
  30. [30]
    C. Bonilla, T. Modak, R. Srivastava and J.W.F. Valle, \( \mathrm{U}{(1)}_B{{{}_{{}_3}}_{-3L}}_{{}_{\mu }} \) gauge symmetry as the simplest description of bs anomalies, arXiv:1705.00915 [INSPIRE].
  31. [31]
    ATLAS collaboration, Search for minimal supersymmetric Standard Model Higgs bosons H/A and for a Z boson in the τ τ final state produced in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS Detector, Eur. Phys. J. C 76 (2016) 585 [arXiv:1608.00890] [INSPIRE].
  32. [32]
    CMS collaboration, Search for heavy resonances decaying to tau lepton pairs in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 02 (2017) 048 [arXiv:1611.06594] [INSPIRE].
  33. [33]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  35. [35]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  36. [36]
    S. Hoeche et al., Matching parton showers and matrix elements, in HERA and the LHC: a workshop on the implications of HERA for LHC physics: proceedings part A, (2005), pg. 288 [hep-ph/0602031] [INSPIRE].
  37. [37]
    M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, W ± Z production at hadron colliders in NNLO QCD, Phys. Lett. B 761 (2016) 179 [arXiv:1604.08576] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    LHC Higgs Cross section Working Group collaboration, D. de Florian et al., Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [INSPIRE].
  39. [39]
    CMS collaboration, Search for massive resonances decaying into W W , W Z, ZZ, qW and qZ in the dijet final state at \( \sqrt{s}=13 \) TeV, CMS-PAS-B2G-17-001, CERN, Geneva Switzerland, (2017).
  40. [40]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].CrossRefMATHGoogle Scholar
  41. [41]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    J. Thaler and K. Van Tilburg, Identifying boosted objects with N -subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    L. Moneta et al., The RooStats project, PoS(ACAT2010)057 [arXiv:1009.1003] [INSPIRE].
  45. [45]
    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Kavli IPMU (WPI), UTIASUniversity of TokyoKashiwaJapan

Personalised recommendations