Advertisement

Defect multiplets of \( \mathcal{N}=1 \) supersymmetry in 4d

  • N. Drukker
  • I. Shamir
  • C. Vergu
Open Access
Regular Article - Theoretical Physics
  • 43 Downloads

Abstract

Any 4d theory possessing \( \mathcal{N}=1 \) supersymmetry admits a so called \( \mathcal{S} \)-multiplet, containing the conserved energy-momentum tensor and supercurrent. When a defect is introduced into such a theory, the \( \mathcal{S} \)-multiplet receives contributions localised on the defect, which indicate the breaking of some translation symmetry and consequently also some supersymmetries. We call this the defect multiplet. We classify such terms corresponding to half-BPS defects which can be either three-dimensional, preserving 3d \( \mathcal{N}=1 \), or two-dimensional, preserving \( \mathcal{N}=\left(0,2\right) \). The new terms localised on the defect furnish multiplets of the reduced symmetry and give rise to the displacement operator.

Keywords

Superspaces Supersymmetry Breaking Space-Time Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.M. Polyakov and V.S. Rychkov, Gauge field strings duality and the loop equation, Nucl. Phys. B 581 (2000) 116 [hep-th/0002106] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    G.W. Semenoff and D. Young, Wavy Wilson line and AdS/CFT, Int. J. Mod. Phys. A 20 (2005) 2833 [hep-th/0405288] [INSPIRE].
  3. [3]
    D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].
  4. [4]
    L. Bianchi, L. Griguolo, M. Preti and D. Seminara, Wilson lines as superconformal defects in ABJM theory: a formula for the emitted radiation, JHEP 10 (2017) 050 [arXiv:1706.06590] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    S. Giombi, R. Roiban and A.A. Tseytlin, Half-BPS Wilson loop and AdS 2 /CFT 1, Nucl. Phys. B 922 (2017) 499 [arXiv:1706.00756] [INSPIRE].
  6. [6]
    L. Bianchi, M. Meineri, R.C. Myers and M. Smolkin, Rényi entropy and conformal defects, JHEP 07 (2016) 076 [arXiv:1511.06713] [INSPIRE].CrossRefMATHGoogle Scholar
  7. [7]
    X. Dong, Shape dependence of holographic Rényi entropy in conformal field theories, Phys. Rev. Lett. 116 (2016) 251602 [arXiv:1602.08493].MathSciNetCrossRefGoogle Scholar
  8. [8]
    S. Balakrishnan, S. Dutta and T. Faulkner, Gravitational dual of the Rényi twist displacement operator, arXiv:1607.06155.
  9. [9]
    L. Bianchi et al., Shape dependence of holographic Rényi entropy in general dimensions, JHEP 11 (2016) 180 [arXiv:1607.07418] [INSPIRE].CrossRefMATHGoogle Scholar
  10. [10]
    C.-S. Chu and R.-X. Miao, Universality in the shape dependence of holographic Rényi entropy for general higher derivative gravity, JHEP 12 (2016) 036 [arXiv:1608.00328].CrossRefMATHGoogle Scholar
  11. [11]
    D.M. McAvity and H. Osborn, Energy momentum tensor in conformal field theories near a boundary, Nucl. Phys. B 406 (1993) 655 [hep-th/9302068] [INSPIRE].
  12. [12]
    P. Liendo and C. Meneghelli, Bootstrap equations for \( \mathcal{N}=4 \) SYM with defects, JHEP 01 (2017) 122 [arXiv:1608.05126] [INSPIRE].
  13. [13]
    C. Herzog, K.-W. Huang, and K. Jensen, Displacement operators and constraints on boundary central charges, arXiv:1709.07431.
  14. [14]
    C.P. Herzog and K.-W. Huang, Boundary conformal field theory and a boundary central charge, JHEP 10 (2017) 189 [arXiv:1707.06224] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    M. Fukuda, N. Kobayashi and T. Nishioka, Operator product expansion for conformal defects, arXiv:1710.11165.
  16. [16]
    J. Armas and J. Tarrio, On actions for (entangling) surfaces and DCFTs, arXiv:1709.06766.
  17. [17]
    K. Jensen and A. O’Bannon, Constraint on defect and boundary renormalization group flows, Phys. Rev. Lett. 116 (2016) 091601 [arXiv:1509.02160].CrossRefGoogle Scholar
  18. [18]
    M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091 [arXiv:1601.02883] [INSPIRE].MathSciNetMATHGoogle Scholar
  19. [19]
    A. Gadde, Conformal constraints on defects, arXiv:1602.06354.
  20. [20]
    J. Yagi, Surface defects and elliptic quantum groups, JHEP 06 (2017) 013 [arXiv:1701.05562] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    C. Closset, H. Kim and B. Willett, \( \mathcal{N}=1 \) supersymmetric indices and the four-dimensional A-model, JHEP 08 (2017) 090 [arXiv:1707.05774] [INSPIRE].
  22. [22]
    D. Gaiotto, S. Gukov and N. Seiberg, Surface defects and resolvents, JHEP 09 (2013) 070 [arXiv:1307.2578] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    Z. Komargodski and N. Seiberg, Comments on supercurrent multiplets, supersymmetric field theories and supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    S. Ferrara and B. Zumino, Transformation properties of the supercurrent, Nucl. Phys. B 87 (1975) 207 [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].MATHGoogle Scholar
  26. [26]
    N. Drukker, D. Martelli and I. Shamir, The energy-momentum multiplet of supersymmetric defect field theories, JHEP 08 (2017) 010 [arXiv:1701.0432].MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    J. Wess and J. Bagger, Supersymmetry and supergravity, 2nd edition, Princeton University Press, Princeton U.S.A. (1992).Google Scholar
  28. [28]
    S.M. Kuzenko, U. Lindström and G. Tartaglino-Mazzucchelli, Off-shell supergravity-matter couplings in three dimensions, JHEP 03 (2011) 120 [arXiv:1101.4013] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    S.M. Kuzenko, J.-H. Park, G. Tartaglino-Mazzucchelli and R. Unge, Off-shell superconformal nonlinear σ-models in three dimensions, JHEP 01 (2011) 146 [arXiv:1011.5727] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    E.I. Buchbinder, S.M. Kuzenko and I.B. Samsonov, Superconformal field theory in three dimensions: Correlation functions of conserved currents, JHEP 06 (2015) 138 [arXiv:1503.04961] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    T.T. Dumitrescu and N. Seiberg, Supercurrents and brane currents in diverse dimensions, JHEP 07 (2011) 095 [arXiv:1106.0031] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of MathematicsKing’s College LondonLondonU.K.
  2. 2.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.

Personalised recommendations