A master bosonization duality

  • Kristan Jensen
Open Access
Regular Article - Theoretical Physics


We conjecture a new sequence of dualities between Chern-Simons gauge theories simultaneously coupled to fundamental bosons and fermions. These dualities reduce to those proposed by Aharony when the number of bosons or fermions is zero. Our conjecture passes a number of consistency checks. These include the matching of global symmetries and consistency with level/rank duality in massive phases.


Duality in Gauge Field Theories Chern-Simons Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S.G. Naculich, H.A. Riggs and H.J. Schnitzer, Group level duality in WZW models and Chern-Simons theory, Phys. Lett. B 246 (1990) 417 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  2. [2]
    E.J. Mlawer, S.G. Naculich, H.A. Riggs and H.J. Schnitzer, Group level duality of WZW fusion coefficients and Chern-Simons link observables, Nucl. Phys. B 352 (1991) 863 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  3. [3]
    T. Nakanishi and A. Tsuchiya, Level rank duality of WZW models in conformal field theory, Commun. Math. Phys. 144 (1992) 351 [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  4. [4]
    O. Aharony, G. Gur-Ari and R. Yacoby, D = 3 bosonic vector models coupled to Chern-Simons gauge theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  5. [5]
    S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons theory with vector fermion matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    O. Aharony, G. Gur-Ari and R. Yacoby, Correlation functions of large-N Chern-Simons-matter theories and bosonization in three dimensions, JHEP 12 (2012) 028 [arXiv:1207.4593] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP 02 (2016) 093 [arXiv:1512.00161] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  8. [8]
    P.-S. Hsin and N. Seiberg, Level/rank duality and Chern-Simons-matter theories, JHEP 09 (2016) 095 [arXiv:1607.07457] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  9. [9]
    Z. Komargodski and N. Seiberg, A symmetry breaking scenario for QCD 3, arXiv:1706.08755 [INSPIRE].
  10. [10]
    D.T. Son, Is the composite fermion a Dirac particle?, Phys. Rev. X 5 (2015) 031027 [arXiv:1502.03446] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    C. Wang and T. Senthil, Dual Dirac liquid on the surface of the electron topological insulator, Phys. Rev. X 5 (2015) 041031 [arXiv:1505.05141] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    M.A. Metlitski and A. Vishwanath, Particle-vortex duality of two-dimensional Dirac fermion from electric-magnetic duality of three-dimensional topological insulators, Phys. Rev. B 93 (2016) 245151 [arXiv:1505.05142] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    D.F. Mross, J. Alicea and O.I. Motrunich, Explicit derivation of duality between a free Dirac cone and quantum electrodynamics in (2 + 1) dimensions, Phys. Rev. Lett. 117 (2016) 016802 [arXiv:1510.08455] [INSPIRE].
  14. [14]
    A. Karch and D. Tong, Particle-vortex duality from 3d bosonization, Phys. Rev. X 6 (2016) 031043 [arXiv:1606.01893] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    N. Seiberg, T. Senthil, C. Wang and E. Witten, A duality web in 2 + 1 dimensions and condensed matter physics, Annals Phys. 374 (2016) 395 [arXiv:1606.01989] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  16. [16]
    J. Murugan and H. Nastase, Particle-vortex duality in topological insulators and superconductors, JHEP 05 (2017) 159 [arXiv:1606.01912] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  17. [17]
    A. Karch, B. Robinson and D. Tong, More Abelian dualities in 2 + 1 dimensions, JHEP 01 (2017) 017 [arXiv:1609.04012] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  18. [18]
    J.-Y. Chen, J.H. Son, C. Wang and S. Raghu, Exact boson-fermion duality on a 3D Euclidean lattice, Phys. Rev. Lett. 120 (2018) 016602 [arXiv:1705.05841] [INSPIRE].
  19. [19]
    O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena and R. Yacoby, The thermal free energy in large-N Chern-Simons-matter theories, JHEP 03 (2013) 121 [arXiv:1211.4843] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    S. Jain, M. Mandlik, S. Minwalla, T. Takimi, S.R. Wadia and S. Yokoyama, Unitarity, crossing symmetry and duality of the S-matrix in large-N Chern-Simons theories with fundamental matter, JHEP 04 (2015) 129 [arXiv:1404.6373] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    K. Inbasekar, S. Jain, P. Nayak and V. Umesh, All tree level scattering amplitudes in Chern-Simons theories with fundamental matter, arXiv:1710.04227 [INSPIRE].
  22. [22]
    K. Jensen and A. Karch, Bosonizing three-dimensional quiver gauge theories, JHEP 11 (2017) 018 [arXiv:1709.01083] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  23. [23]
    K. Jensen and A. Karch, Embedding three-dimensional bosonization dualities into string theory, JHEP 12 (2017) 031 [arXiv:1709.07872] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  24. [24]
    A. Armoni and V. Niarchos, Phases of QCD 3 from non-SUSY Seiberg duality and brane dynamics, arXiv:1711.04832 [INSPIRE].
  25. [25]
    D. Radičević, Disorder operators in Chern-Simons-fermion theories, JHEP 03 (2016) 131 [arXiv:1511.01902] [INSPIRE].MATHADSGoogle Scholar
  26. [26]
    O. Aharony, F. Benini, P.-S. Hsin and N. Seiberg, Chern-Simons-matter dualities with SO and USp gauge groups, JHEP 02 (2017) 072 [arXiv:1611.07874] [INSPIRE].
  27. [27]
    M.A. Metlitski, A. Vishwanath and C. Xu, Duality and bosonization of (2 + 1)-dimensional Majorana fermions, Phys. Rev. B 95 (2017) 205137 [arXiv:1611.05049] [INSPIRE].
  28. [28]
    D. Gaiotto, Z. Komargodski and N. Seiberg, Time-reversal breaking in QCD 4 , walls and dualities in 2 + 1 dimensions, arXiv:1708.06806 [INSPIRE].
  29. [29]
    J. Gomis, Z. Komargodski and N. Seiberg, Phases of adjoint QCD 3 and dualities, arXiv:1710.03258 [INSPIRE].
  30. [30]
    C. Cordova, P.-S. Hsin and N. Seiberg, Global symmetries, counterterms and duality in Chern-Simons matter theories with orthogonal gauge groups, arXiv:1711.10008 [INSPIRE].
  31. [31]
    K. Aitken, A. Baumgartner, A. Karch and B. Robinson, 3d Abelian dualities with boundaries, arXiv:1712.02801 [INSPIRE].
  32. [32]
    F. Benini, P.-S. Hsin and N. Seiberg, Comments on global symmetries, anomalies and duality in (2 + 1)d, JHEP 04 (2017) 135 [arXiv:1702.07035] [INSPIRE].
  33. [33]
    S. Jain, S. Minwalla and S. Yokoyama, Chern Simons duality with a fundamental boson and fermion, JHEP 11 (2013) 037 [arXiv:1305.7235] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    G. Gur-Ari and R. Yacoby, Three dimensional bosonization from supersymmetry, JHEP 11 (2015) 013 [arXiv:1507.04378] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  35. [35]
    S. Kachru, M. Mulligan, G. Torroba and H. Wang, Bosonization and mirror symmetry, Phys. Rev. D 94 (2016) 085009 [arXiv:1608.05077] [INSPIRE].
  36. [36]
    S. Kachru, M. Mulligan, G. Torroba and H. Wang, Nonsupersymmetric dualities from mirror symmetry, Phys. Rev. Lett. 118 (2017) 011602 [arXiv:1609.02149] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  37. [37]
    F. Benini, Three-dimensional dualities with bosons and fermions, arXiv:1712.00020 [INSPIRE].
  38. [38]
    S.H. Shenker and X. Yin, Vector models in the singlet sector at finite temperature, arXiv:1109.3519 [INSPIRE].
  39. [39]
    T.T. Wu and C.N. Yang, Dirac monopole without strings: monopole harmonics, Nucl. Phys. B 107 (1976) 365 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  40. [40]
    D. Radičević, D. Tong and C. Turner, Non-Abelian 3d bosonization and quantum Hall states, JHEP 12 (2016) 067 [arXiv:1608.04732] [INSPIRE].MATHADSGoogle Scholar
  41. [41]
    A. Giveon and D. Kutasov, Seiberg duality in Chern-Simons theory, Nucl. Phys. B 812 (2009) 1 [arXiv:0808.0360] [INSPIRE].
  42. [42]
    K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  43. [43]
    O. Aharony, S. Jain and S. Minwalla, forthcoming.Google Scholar
  44. [44]
    F. Benini, C. Closset and S. Cremonesi, Comments on 3d Seiberg-like dualities, JHEP 10 (2011) 075 [arXiv:1108.5373] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomySan Francisco State UniversitySan FranciscoU.S.A.

Personalised recommendations