Kinematic space and wormholes

Open Access
Regular Article - Theoretical Physics


The kinematic space could play a key role in constructing the bulk geometry from dual CFT. In this paper, we study the kinematic space from geometric points of view, without resorting to differential entropy. We find that the kinematic space could be intrinsically defined in the embedding space. For each oriented geodesic in the Poincaré disk, there is a corresponding point in the kinematic space. This point is the tip of the causal diamond of the disk whose intersection with the Poincaré disk determines the geodesic. In this geometric construction, the causal structure in the kinematic space can be seen clearly. Moreover, we find that every transformation in the \( \mathrm{S}\mathrm{L}\left(2,\kern0.5em \mathbb{R}\right) \) leads to a geodesic in the kinematic space. In particular, for a hyperbolic transformation defining a BTZ black hole, it is a timelike geodesic in the kinematic space. We show that the horizon length of the static BTZ black hole could be computed by the geodesic length of corresponding points in the kinematic space. Furthermore, we discuss the fundamental regions in the kinematic space for the BTZ blackhole and multi-boundary wormholes.


AdS-CFT Correspondence Black Holes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    B. Swingle, Entanglement renormalization and holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].ADSGoogle Scholar
  5. [5]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence, JHEP 06 (2015) 149 [arXiv:1503.06237] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    B. Czech, L. Lamprou, S. McCandlish and J. Sully, Tensor networks from kinematic space, JHEP 07 (2016) 100 [arXiv:1512.01548] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    B. Czech et al., Tensor network quotient takes the vacuum to the thermal state, Phys. Rev. B 94 (2016) 085101 [arXiv:1510.07637] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    P. Hayden et al., Holographic duality from random tensor networks, JHEP 11 (2016) 009 [arXiv:1601.01694] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Bhattacharyya, Z.-S. Gao, L.-Y. Hung and S.-N. Liu, Exploring the tensor networks/AdS correspondence, JHEP 08 (2016) 086 [arXiv:1606.00621] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    V. Balasubramanian, B. Czech, B.D. Chowdhury and J. de Boer, The entropy of a hole in spacetime, JHEP 10 (2013) 220 [arXiv:1305.0856] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    V. Balasubramanian, B.D. Chowdhury, B. Czech, J. de Boer and M.P. Heller, Bulk curves from boundary data in holography, Phys. Rev. D 89 (2014) 086004 [arXiv:1310.4204] [INSPIRE].ADSGoogle Scholar
  13. [13]
    R.C. Myers, J. Rao and S. Sugishita, Holographic holes in higher dimensions, JHEP 06 (2014) 044 [arXiv:1403.3416] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    B. Chen and J. Long, Strong subadditivity and emergent surface, Phys. Rev. D 90 (2014) 066012 [arXiv:1405.4684] [INSPIRE].ADSGoogle Scholar
  15. [15]
    B. Czech, X. Dong and J. Sully, Holographic reconstruction of general bulk surfaces, JHEP 11 (2014) 015 [arXiv:1406.4889] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    M. Headrick, R.C. Myers and J. Wien, Holographic holes and differential entropy, JHEP 10 (2014) 149 [arXiv:1408.4770] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    B. Czech and L. Lamprou, Holographic definition of points and distances, Phys. Rev. D 90 (2014) 106005 [arXiv:1409.4473] [INSPIRE].ADSGoogle Scholar
  18. [18]
    B. Czech, P. Hayden, N. Lashkari and B. Swingle, The information theoretic interpretation of the length of a curve, JHEP 06 (2015) 157 [arXiv:1410.1540] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    B. Czech, L. Lamprou, S. McCandlish and J. Sully, Integral geometry and holography, JHEP 10 (2015) 175 [arXiv:1505.05515] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    G. Solanes, Integral geometry and curvature integrals in hyperbolic space, Ph.D. Thesis, Universitat Autonoma de Barcelona (2003).Google Scholar
  21. [21]
    X. Huang and F.-L. Lin, Entanglement renormalization and integral geometry, JHEP 12 (2015) 081 [arXiv:1507.04633] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    C.T. Asplund, N. Callebaut and C. Zukowski, Equivalence of emergent de Sitter spaces from conformal field theory, JHEP 09 (2016) 154 [arXiv:1604.02687] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. de Boer, F.M. Haehl, M.P. Heller and R.C. Myers, Entanglement, holography and causal diamonds, JHEP 08 (2016) 162 [arXiv:1606.03307] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    M. Bañados, C. Teitelboim and J. Zanelli, Black hole in three-dimensional spacetime, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2+1) black hole, Phys. Rev. D 48 (1993) 1506 [Erratum ibid. D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].
  26. [26]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    S. Aminneborg, I. Bengtsson, D. Brill, S. Holst and P. Peldan, Black holes and wormholes in (2+1)-dimensions, Class. Quant. Grav. 15 (1998) 627 [gr-qc/9707036] [INSPIRE].
  28. [28]
    D. Brill, Black holes and wormholes in (2+1)-dimensions, Lect. Notes Phys. 537 (2000) 143 [gr-qc/9904083] [INSPIRE].
  29. [29]
    K. Krasnov, Holography and Riemann surfaces, Adv. Theor. Math. Phys. 4 (2000) 929 [hep-th/0005106] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    K. Skenderis and B.C. van Rees, Holography and wormholes in 2+1 dimensions, Commun. Math. Phys. 301 (2011) 583 [arXiv:0912.2090] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    V. Balasubramanian, P. Hayden, A. Maloney, D. Marolf and S.F. Ross, Multiboundary wormholes and holographic entanglement, Class. Quant. Grav. 31 (2014) 185015 [arXiv:1406.2663] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  32. [32]
    D. Marolf, H. Maxfield, A. Peach and S.F. Ross, Hot multiboundary wormholes from bipartite entanglement, Class. Quant. Grav. 32 (2015) 215006 [arXiv:1506.04128] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    H. Maxfield, Entanglement entropy in three dimensional gravity, JHEP 04 (2015) 031 [arXiv:1412.0687] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    M. Freedman and M. Headrick, Bit threads and holographic entanglement, arXiv:1604.00354 [INSPIRE].
  35. [35]
    J.d. Zhang and B. Chen, work in progress.Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.TianQin Research Center for Gravitational PhysicsSun Yat-sen UniversityZhuhaiP.R. China
  2. 2.Department of Physics and State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingP.R. China
  3. 3.Collaborative Innovation Center of Quantum MatterBeijingP.R. China
  4. 4.Center for High Energy PhysicsPeking UniversityBeijingP.R. China

Personalised recommendations