Advertisement

Multi-component dark matter through a radiative Higgs portal

  • Anthony DiFranzo
  • Gopolang Mohlabeng
Open Access
Regular Article - Theoretical Physics

Abstract

We study a multi-component dark matter model where interactions with the Standard Model are primarily via the Higgs boson. The model contains vector-like fermions charged under SU(2) W × U(1) Y and under the dark gauge group, U(1)′. This results in two dark matter candidates. A spin-1 and a spin-\( \frac{1}{2} \) candidate, which have loop and tree-level couplings to the Higgs, respectively. We explore the resulting effect on the dark matter relic abundance, while also evaluating constraints on the Higgs invisible width and from direct detection experiments. Generally, we find that this model is highly constrained when the fermionic candidate is the predominant fraction of the dark matter relic abundance.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM Higgs Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Arrenberg et al., Working Group Report: Dark Matter Complementarity, in Proceedings, Community Summer Study 2013: Snowmass on the Mississippi (CSS2013), Minneapolis, MN U.S.A., July 29 – August 6 2013 [arXiv:1310.8621] [INSPIRE].
  2. [2]
    V. Semenov, S. Pilipenko, A. Doroshkevich, V. Lukash and E. Mikheeva, Dark matter halo formation in the multicomponent dark matter models, arXiv:1306.3210 [INSPIRE].
  3. [3]
    G. Peim, Multicomponent dark matter: possible signatures at colliders, satellites, and underground experiments, Ph.D. Thesis, Northeastern University (2014).Google Scholar
  4. [4]
    P. Konar, K. Kong, K.T. Matchev and M. Park, Dark Matter Particle Spectroscopy at the LHC: Generalizing M(T2) to Asymmetric Event Topologies, JHEP 04 (2010) 086 [arXiv:0911.4126] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  5. [5]
    M.V. Medvedev, Cosmological Simulations of Multicomponent Cold Dark Matter, Phys. Rev. Lett. 113 (2014) 071303 [arXiv:1305.1307] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    K. Agashe, Y. Cui, L. Necib and J. Thaler, (In)direct Detection of Boosted Dark Matter, JCAP 10 (2014) 062 [arXiv:1405.7370] [INSPIRE].
  7. [7]
    K. Kong, G. Mohlabeng and J.-C. Park, Boosted dark matter signals uplifted with self-interaction, Phys. Lett. B 743 (2015) 256 [arXiv:1411.6632] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J. Kopp, J. Liu and X.-P. Wang, Boosted Dark Matter in IceCube and at the Galactic Center, JHEP 04 (2015) 105 [arXiv:1503.02669] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Berger, Y. Cui and Y. Zhao, Detecting Boosted Dark Matter from the Sun with Large Volume Neutrino Detectors, JCAP 02 (2015) 005 [arXiv:1410.2246] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    K.R. Dienes and B. Thomas, Dynamical Dark Matter: I. Theoretical Overview, Phys. Rev. D 85 (2012) 083523 [arXiv:1106.4546] [INSPIRE].
  11. [11]
    K.R. Dienes, J. Kumar, B. Thomas and D. Yaylali, Dark-Matter Decay as a Complementary Probe of Multicomponent Dark Sectors, Phys. Rev. Lett. 114 (2015) 051301 [arXiv:1406.4868] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Aoki, J. Kubo and H. Takano, Two-loop radiative seesaw mechanism with multicomponent dark matter explaining the possible γ excess in the Higgs boson decay and at the Fermi LAT, Phys. Rev. D 87 (2013) 116001 [arXiv:1302.3936] [INSPIRE].ADSGoogle Scholar
  13. [13]
    M. Aoki, J. Kubo and H. Takano, Multicomponent Dark Matter in Radiative Seesaw Model and Monochromatic Neutrino Flux, Phys. Rev. D 90 (2014) 076011 [arXiv:1408.1853] [INSPIRE].ADSGoogle Scholar
  14. [14]
    C.-Q. Geng, D. Huang and L.-H. Tsai, Imprint of multicomponent dark matter on AMS-02, Phys. Rev. D 89 (2014) 055021 [arXiv:1312.0366] [INSPIRE].ADSGoogle Scholar
  15. [15]
    C.-Q. Geng, D. Huang and C. Lai, Revisiting multicomponent dark matter with new AMS-02 data, Phys. Rev. D 91 (2015) 095006 [arXiv:1411.4450] [INSPIRE].ADSGoogle Scholar
  16. [16]
    L. Bian, R. Ding and B. Zhu, Two Component Higgs-Portal Dark Matter, Phys. Lett. B 728 (2014) 105 [arXiv:1308.3851] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Complex Singlet Extension of the Standard Model, Phys. Rev. D 79 (2009) 015018 [arXiv:0811.0393] [INSPIRE].ADSGoogle Scholar
  18. [18]
    L. Bian, T. Li, J. Shu and X.-C. Wang, Two component dark matter with multi-Higgs portals, JHEP 03 (2015) 126 [arXiv:1412.5443] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    M. Duch, B. Grzadkowski and M. McGarrie, A stable Higgs portal with vector dark matter, JHEP 09 (2015) 162 [arXiv:1506.08805] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Bhattacharya, A. Drozd, B. Grzadkowski and J. Wudka, Two-Component Dark Matter, JHEP 10 (2013) 158 [arXiv:1309.2986] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Bhattacharya, A. Drozd, B. Grzadkowski and J. Wudka, Constraints on Two-Component Dark Matter, Acta Phys. Polon. B 44 (2013) 2373 [arXiv:1310.7901] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    Z.G. Berezhiani and M. Yu. Khlopov, Physics of cosmological dark matter in the theory of broken family symmetry. (In Russian), Sov. J. Nucl. Phys. 52 (1990) 60 [INSPIRE].
  23. [23]
    D. Chialva, P.S.B. Dev and A. Mazumdar, Multiple dark matter scenarios from ubiquitous stringy throats, Phys. Rev. D 87 (2013) 063522 [arXiv:1211.0250] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. DiFranzo, P.J. Fox and T.M.P. Tait, Vector Dark Matter through a Radiative Higgs Portal, JHEP 04 (2016) 135 [arXiv:1512.06853] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [arXiv:0811.0172] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    Y. Farzan and A.R. Akbarieh, VDM: A model for Vector Dark Matter, JCAP 10 (2012) 026 [arXiv:1207.4272] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Baek, P. Ko, W.-I. Park and E. Senaha, Higgs Portal Vector Dark Matter: Revisited, JHEP 05 (2013) 036 [arXiv:1212.2131] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Baek, P. Ko and W.-I. Park, Singlet Portal Extensions of the Standard Seesaw Models to a Dark Sector with Local Dark Symmetry, JHEP 07 (2013) 013 [arXiv:1303.4280] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Baek, P. Ko and W.-I. Park, Invisible Higgs Decay Width vs. Dark Matter Direct Detection Cross section in Higgs Portal Dark Matter Models, Phys. Rev. D 90 (2014) 055014 [arXiv:1405.3530] [INSPIRE].
  30. [30]
    S. Baek, P. Ko, W.-I. Park and Y. Tang, Indirect and direct signatures of Higgs portal decaying vector dark matter for positron excess in cosmic rays, JCAP 06 (2014) 046 [arXiv:1402.2115] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P. Ko, W.-I. Park and Y. Tang, Higgs portal vector dark matter for GeV scale γ-ray excess from galactic center, JCAP 09 (2014) 013 [arXiv:1404.5257] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    C. Gross, O. Lebedev and Y. Mambrini, Non-Abelian gauge fields as dark matter, JHEP 08 (2015) 158 [arXiv:1505.07480] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    S. Di Chiara and K. Tuominen, A minimal model for SU(N) vector dark matter, JHEP 11 (2015) 188 [arXiv:1506.03285] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    C.-H. Chen and T. Nomura, Searching for vector dark matter via Higgs portal at the LHC, Phys. Rev. D 93 (2016) 074019 [arXiv:1507.00886] [INSPIRE].ADSGoogle Scholar
  35. [35]
    J.S. Kim, O. Lebedev and D. Schmeier, Higgsophilic gauge bosons and monojets at the LHC, JHEP 11 (2015) 128 [arXiv:1507.08673] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Karam and K. Tamvakis, Dark matter and neutrino masses from a scale-invariant multi-Higgs portal, Phys. Rev. D 92 (2015) 075010 [arXiv:1508.03031] [INSPIRE].ADSGoogle Scholar
  37. [37]
    A. Karam and K. Tamvakis, Dark Matter from a Classically Scale-Invariant SU(3)X, Phys. Rev. D 94 (2016) 055004 [arXiv:1607.01001] [INSPIRE].ADSGoogle Scholar
  38. [38]
    W.H. Furry, A Symmetry Theorem in the Positron Theory, Phys. Rev. 51 (1937) 125 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  39. [39]
    F. D’Eramo and J. Thaler, Semi-annihilation of Dark Matter, JHEP 06 (2010) 109 [arXiv:1003.5912] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  40. [40]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
  41. [41]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
  42. [42]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    G. Bélanger and J.-C. Park, Assisted freeze-out, JCAP 03 (2012) 038 [arXiv:1112.4491] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  45. [45]
    P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke and E.A. Baltz, DarkSUSY: Computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [INSPIRE].
  46. [46]
    K.R. Dienes, J. Kumar and B. Thomas, Direct Detection of Dynamical Dark Matter, Phys. Rev. D 86 (2012) 055016 [arXiv:1208.0336] [INSPIRE].ADSGoogle Scholar
  47. [47]
    LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  48. [48]
    ATLAS collaboration, Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector, JHEP 11 (2015) 206 [arXiv:1509.00672] [INSPIRE].
  49. [49]
    SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group, L3 collaborations, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  50. [50]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  51. [51]
    A. Basirnia, S. Macaluso and D. Shih, Dark Matter and the Higgs in Natural SUSY, arXiv:1605.08442 [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Theoretical Physics DepartmentFermilabBataviaU.S.A.
  2. 2.Department of Physics and AstronomyUniversity of CaliforniaIrvineU.S.A.
  3. 3.Department of Physics and AstronomyRutgers UniversityPiscatawayU.S.A.
  4. 4.Department of Physics and AstronomyUniversity of KansasLawrenceU.S.A.

Personalised recommendations