Advertisement

Precise Higgs mass calculations in (non-)minimal supersymmetry at both high and low scales

  • Peter Athron
  • Jae-hyeon Park
  • Tom Steudtner
  • Dominik Stöckinger
  • Alexander Voigt
Open Access
Regular Article - Theoretical Physics

Abstract

We present FlexibleEFTHiggs, a method for calculating the SM-like Higgs pole mass in SUSY (and even non-SUSY) models, which combines an effective field theory approach with a diagrammatic calculation. It thus achieves an all order resummation of leading logarithms together with the inclusion of all non-logarithmic 1-loop contributions. We implement this method into FlexibleSUSY and study its properties in the MSSM, NMSSM, E6SSM and MRSSM. In the MSSM, it correctly interpolates between the known results of effective field theory calculations in the literature for a high SUSY scale and fixed- order calculations in the full theory for a sub-TeV SUSY scale. We compare our MSSM results to those from public codes and identify the origin of the most significant deviations between the \( \overline{\mathrm{DR}} \) programs. We then perform a similar comparison in the remaining three non-minimal models. For all four models we estimate the theoretical uncertainty of Flex- ibleEFTHiggs and the fixed-order \( \overline{\mathrm{DR}} \) programs thereby finding that the former becomes more precise than the latter for a SUSY scale above a few TeV. Even for sub-TeV SUSY scales, FlexibleEFTHiggs maintains the uncertainty estimate around 2–3 GeV, remaining a competitive alternative to existing fixed-order computations.

Keywords

Higgs Physics Supersymmetric Standard Model Effective field theories Renormalization Group 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    P. Draper and H. Rzehak, A Review of Higgs Mass Calculations in Supersymmetric Models, Phys. Rept. 619 (2016) 1 [arXiv:1601.01890] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    S. Heinemeyer, W. Hollik and G. Weiglein, QCD corrections to the masses of the neutral CP-even Higgs bosons in the MSSM, Phys. Rev. D 58 (1998) 091701 [hep-ph/9803277] [INSPIRE].
  5. [5]
    S. Heinemeyer, W. Hollik and G. Weiglein, Precise prediction for the mass of the lightest Higgs boson in the MSSM, Phys. Lett. B 440 (1998) 296 [hep-ph/9807423] [INSPIRE].
  6. [6]
    S. Heinemeyer, W. Hollik and G. Weiglein, The Masses of the neutral CP-even Higgs bosons in the MSSM: Accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].
  7. [7]
    R.-J. Zhang, Two loop effective potential calculation of the lightest CP even Higgs boson mass in the MSSM, Phys. Lett. B 447 (1999) 89 [hep-ph/9808299] [INSPIRE].
  8. [8]
    J.R. Espinosa and R.-J. Zhang, MSSM lightest CP even Higgs boson mass to O(α s α t): The Effective potential approach, JHEP 03 (2000) 026 [hep-ph/9912236] [INSPIRE].
  9. [9]
    G. Degrassi, P. Slavich and F. Zwirner, On the neutral Higgs boson masses in the MSSM for arbitrary stop mixing, Nucl. Phys. B 611 (2001) 403 [hep-ph/0105096] [INSPIRE].
  10. [10]
    J.R. Espinosa and R.-J. Zhang, Complete two loop dominant corrections to the mass of the lightest CP even Higgs boson in the minimal supersymmetric standard model, Nucl. Phys. B 586 (2000) 3 [hep-ph/0003246] [INSPIRE].
  11. [11]
    A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the O(α t2) two loop corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 631 (2002) 195 [hep-ph/0112177] [INSPIRE].
  12. [12]
    A. Dedes and P. Slavich, Two loop corrections to radiative electroweak symmetry breaking in the MSSM, Nucl. Phys. B 657 (2003) 333 [hep-ph/0212132] [INSPIRE].
  13. [13]
    A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the two loop sbottom corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 643 (2002) 79 [hep-ph/0206101] [INSPIRE].
  14. [14]
    A. Dedes, G. Degrassi and P. Slavich, On the two loop Yukawa corrections to the MSSM Higgs boson masses at large tan β, Nucl. Phys. B 672 (2003) 144 [hep-ph/0305127] [INSPIRE].
  15. [15]
    S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the MSSM Higgs sector at O(α b α s ), Eur. Phys. J. C 39 (2005) 465 [hep-ph/0411114] [INSPIRE].
  16. [16]
    S.P. Martin, Complete two loop effective potential approximation to the lightest Higgs scalar boson mass in supersymmetry, Phys. Rev. D 67 (2003) 095012 [hep-ph/0211366] [INSPIRE].
  17. [17]
    R.V. Harlander, P. Kant, L. Mihaila and M. Steinhauser, Higgs boson mass in supersymmetry to three loops, Phys. Rev. Lett. 100 (2008) 191602 [arXiv:0803.0672] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P. Kant, R.V. Harlander, L. Mihaila and M. Steinhauser, Light MSSM Higgs boson mass to three-loop accuracy, JHEP 08 (2010) 104 [arXiv:1005.5709] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  19. [19]
    S. Borowka, T. Hahn, S. Heinemeyer, G. Heinrich and W. Hollik, Momentum-dependent two-loop QCD corrections to the neutral Higgs-boson masses in the MSSM, Eur. Phys. J. C74 (2014) 2994 [arXiv:1404.7074] [INSPIRE].
  20. [20]
    S. Borowka, T. Hahn, S. Heinemeyer, G. Heinrich and W. Hollik, Renormalization scheme dependence of the two-loop QCD corrections to the neutral Higgs-boson masses in the MSSM, Eur. Phys. J. C 75 (2015) 424 [arXiv:1505.03133] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G. Degrassi, S. Di Vita and P. Slavich, Two-loop QCD corrections to the MSSM Higgs masses beyond the effective-potential approximation, Eur. Phys. J. C 75 (2015) 61 [arXiv:1410.3432] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].
  23. [23]
    B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].
  24. [24]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].
  25. [25]
    B.C. Allanach, P. Athron, L.C. Tunstall, A. Voigt and A.G. Williams, Next-to-Minimal SOFTSUSY, Comput. Phys. Commun. 185 (2014) 2322 [arXiv:1311.7659] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  26. [26]
    P. Athron, J.-h. Park, D. Stockinger and A. Voigt, FlexibleSUSY — A spectrum generator generator for supersymmetric models, Comput. Phys. Commun. 190 (2015) 139 [arXiv:1406.2319] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G. Degrassi and P. Slavich, On the radiative corrections to the neutral Higgs boson masses in the NMSSM, Nucl. Phys. B 825 (2010) 119 [arXiv:0907.4682] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  28. [28]
    U. Ellwanger and C. Hugonie, NMSPEC: A Fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions, Comput. Phys. Commun. 177 (2007) 399 [hep-ph/0612134] [INSPIRE].
  29. [29]
    J. Baglio et al., NMSSMCALC: A Program Package for the Calculation of Loop-Corrected Higgs Boson Masses and Decay Widths in the (Complex) NMSSM, Comput. Phys. Commun. 185 (2014) 3372 [arXiv:1312.4788] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    P. Drechsel, L. Galeta, S. Heinemeyer and G. Weiglein, Precise Predictions for the Higgs-Boson Masses in the NMSSM, arXiv:1601.08100 [INSPIRE].
  31. [31]
    M.D. Goodsell, K. Nickel and F. Staub, Two-Loop Higgs mass calculations in supersymmetric models beyond the MSSM with SARAH and SPheno, Eur. Phys. J. C 75 (2015) 32 [arXiv:1411.0675] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Goodsell, K. Nickel and F. Staub, Generic two-loop Higgs mass calculation from a diagrammatic approach, Eur. Phys. J. C 75 (2015) 290 [arXiv:1503.03098] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-Precision Predictions for the Light CP -Even Higgs Boson Mass of the Minimal Supersymmetric Standard Model, Phys. Rev. Lett. 112 (2014) 141801 [arXiv:1312.4937] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    H. Bahl and W. Hollik, Precise prediction for the light MSSM Higgs boson mass combining effective field theory and fixed-order calculations, Eur. Phys. J. C 76 (2016) 499 [arXiv:1608.01880] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    R. Barbieri, M. Frigeni and F. Caravaglios, The Supersymmetric Higgs for heavy superpartners, Phys. Lett. B 258 (1991) 167 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    Y. Okada, M. Yamaguchi and T. Yanagida, Renormalization group analysis on the Higgs mass in the softly broken supersymmetric standard model, Phys. Lett. B 262 (1991) 54 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    H.E. Haber and R. Hempfling, The Renormalization group improved Higgs sector of the minimal supersymmetric model, Phys. Rev. D 48 (1993) 4280 [hep-ph/9307201] [INSPIRE].
  38. [38]
    J.A. Casas, J.R. Espinosa, M. Quirós and A. Riotto, The Lightest Higgs boson mass in the minimal supersymmetric standard model, Nucl. Phys. B 436 (1995) 3 [Erratum ibid. B 439 (1995) 466] [hep-ph/9407389] [INSPIRE].
  39. [39]
    M. Carena, J.R. Espinosa, M. Quirós and C.E.M. Wagner, Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM, Phys. Lett. B 355 (1995) 209 [hep-ph/9504316] [INSPIRE].
  40. [40]
    M. Carena, M. Quirós and C.E.M. Wagner, Effective potential methods and the Higgs mass spectrum in the MSSM, Nucl. Phys. B 461 (1996) 407 [hep-ph/9508343] [INSPIRE].
  41. [41]
    H.E. Haber, R. Hempfling and A.H. Hoang, Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model, Z. Phys. C 75 (1997) 539 [hep-ph/9609331] [INSPIRE].
  42. [42]
    S.P. Martin, Three-loop corrections to the lightest Higgs scalar boson mass in supersymmetry, Phys. Rev. D 75 (2007) 055005 [hep-ph/0701051] [INSPIRE].
  43. [43]
    P. Draper, G. Lee and C.E.M. Wagner, Precise estimates of the Higgs mass in heavy supersymmetry, Phys. Rev. D 89 (2014) 055023 [arXiv:1312.5743] [INSPIRE].ADSGoogle Scholar
  44. [44]
    E. Bagnaschi, G.F. Giudice, P. Slavich and A. Strumia, Higgs Mass and Unnatural Supersymmetry, JHEP 09 (2014) 092 [arXiv:1407.4081] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J. Pardo Vega and G. Villadoro, SusyHD: Higgs mass Determination in Supersymmetry, JHEP 07 (2015) 159 [arXiv:1504.05200] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Binger, Higgs boson mass in split supersymmetry at two-loops, Phys. Rev. D 73 (2006) 095001 [hep-ph/0408240] [INSPIRE].
  47. [47]
    G.F. Giudice and A. Strumia, Probing High-Scale and Split Supersymmetry with Higgs Mass Measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  48. [48]
    G. Lee and C.E.M. Wagner, Higgs bosons in heavy supersymmetry with an intermediate m A , Phys. Rev. D 92 (2015) 075032 [arXiv:1508.00576] [INSPIRE].ADSGoogle Scholar
  49. [49]
    M. Carena, J. Ellis, J.S. Lee, A. Pilaftsis and C.E.M. Wagner, CP Violation in Heavy MSSM Higgs Scenarios, JHEP 02 (2016) 123 [arXiv:1512.00437] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    E. Bagnaschi, F. Brümmer, W. Buchmüller, A. Voigt and G. Weiglein, Vacuum stability and supersymmetry at high scales with two Higgs doublets, JHEP 03 (2016) 158 [arXiv:1512.07761] [INSPIRE].
  51. [51]
    FlexibleSUSY Homepage, https://flexiblesusy.hepforge.org/.
  52. [52]
    MhEFT Homepage, http://gabrlee.com/code.
  53. [53]
    F. Staub, SARAH, arXiv:0806.0538 [INSPIRE].
  54. [54]
    F. Staub, From Superpotential to Model Files for FeynArts and CalcHep/CompHEP, Comput. Phys. Commun. 181 (2010) 1077 [arXiv:0909.2863] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  55. [55]
    F. Staub, Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies, Comput. Phys. Commun. 182 (2011) 808 [arXiv:1002.0840] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  56. [56]
    F. Staub, T. Ohl, W. Porod and C. Speckner, A Tool Box for Implementing Supersymmetric Models, Comput. Phys. Commun. 183 (2012) 2165 [arXiv:1109.5147] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    F. Staub, SARAH 3.2: Dirac Gauginos, UFO output and more, Comput. Phys. Commun. 184 (2013) 1792 [arXiv:1207.0906] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    F. Staub, SARAH 4 : A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  59. [59]
    M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, The Higgs Boson Masses and Mixings of the Complex MSSM in the Feynman-Diagrammatic Approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].
  60. [60]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].
  61. [61]
    W. Hollik and S. Paßehr, Higgs boson masses and mixings in the complex MSSM with two-loop top-Yukawa-coupling corrections, JHEP 10 (2014) 171 [arXiv:1409.1687] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    W. Hollik and S. Paßehr, Two-loop top-Yukawa-coupling corrections to the charged Higgs-boson mass in the MSSM, Eur. Phys. J. C 75 (2015) 336 [arXiv:1502.02394] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    K. Ender, T. Graf, M. Muhlleitner and H. Rzehak, Analysis of the NMSSM Higgs Boson Masses at One-Loop Level, Phys. Rev. D 85 (2012) 075024 [arXiv:1111.4952] [INSPIRE].ADSGoogle Scholar
  64. [64]
    T. Graf, R. Grober, M. Muhlleitner, H. Rzehak and K. Walz, Higgs Boson Masses in the Complex NMSSM at One-Loop Level, JHEP 10 (2012) 122 [arXiv:1206.6806] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M. Dugan, B. Grinstein and L.J. Hall, CP Violation in the Minimal N = 1 Supergravity Theory, Nucl. Phys. B 255 (1985) 413 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    B.C. Allanach et al., SUSY Les Houches Accord 2, Comput. Phys. Commun. 180 (2009) 8 [arXiv:0801.0045] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    L.V. Avdeev and M. Yu. Kalmykov, Pole masses of quarks in dimensional reduction, Nucl. Phys. B 502 (1997) 419 [hep-ph/9701308] [INSPIRE].
  68. [68]
    A. Bednyakov, A. Onishchenko, V. Velizhanin and O. Veretin, Two loop O(α S2) MSSM corrections to the pole masses of heavy quarks, Eur. Phys. J. C 29 (2003) 87 [hep-ph/0210258] [INSPIRE].
  69. [69]
    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, Higgs self-coupling β-function in the Standard Model at three loops, Nucl. Phys. B 875 (2013) 552 [arXiv:1303.4364] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  71. [71]
    J. Fleischer, F. Jegerlehner, O.V. Tarasov and O.L. Veretin, Two loop QCD corrections of the massive fermion propagator, Nucl. Phys. B 539 (1999) 671 [Erratum ibid. B 571 (2000) 511] [hep-ph/9803493] [INSPIRE].
  72. [72]
    K. Melnikov and T.v. Ritbergen, The Three loop relation between the MS-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [INSPIRE].
  73. [73]
    G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    M. Sperling, D. Stöckinger and A. Voigt, Renormalization of vacuum expectation values in spontaneously broken gauge theories, JHEP 07 (2013) 132 [arXiv:1305.1548] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  75. [75]
    M. Sperling, D. Stöckinger and A. Voigt, Renormalization of vacuum expectation values in spontaneously broken gauge theories: Two-loop results, JHEP 01 (2014) 068 [arXiv:1310.7629] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  76. [76]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  77. [77]
    M. Maniatis, The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  78. [78]
    J.R. Espinosa and M. Quiros, Two loop radiative corrections to the mass of the lightest Higgs boson in supersymmetric standard models, Phys. Lett. B 266 (1991) 389 [INSPIRE
  79. [79]
    J.R. Espinosa and M. Quiros, Upper bounds on the lightest Higgs boson mass in general supersymmetric Standard Models, Phys. Lett. B 302 (1993) 51 [hep-ph/9212305] [INSPIRE].
  80. [80]
    T. Elliott, S.F. King and P.L. White, Supersymmetric Higgs bosons at the limit, Phys. Lett. B 305 (1993) 71 [hep-ph/9302202] [INSPIRE].
  81. [81]
    G.K. Yeghian, Upper bound on the lightest Higgs mass in supersymmetric theories, Acta Phys. Slov. 49 (1999) 823 [hep-ph/9904488] [INSPIRE].
  82. [82]
    U. Ellwanger and C. Hugonie, Masses and couplings of the lightest Higgs bosons in the (M + 1) SSM, Eur. Phys. J. C 25 (2002) 297 [hep-ph/9909260] [INSPIRE].
  83. [83]
    U. Ellwanger and C. Hugonie, Yukawa induced radiative corrections to the lightest Higgs boson mass in the NMSSM, Phys. Lett. B 623 (2005) 93 [hep-ph/0504269] [INSPIRE].
  84. [84]
    U. Ellwanger, Radiative corrections to the neutral Higgs spectrum in supersymmetry with a gauge singlet, Phys. Lett. B 303 (1993) 271 [hep-ph/9302224] [INSPIRE].
  85. [85]
    P.N. Pandita, Radiative corrections to the scalar Higgs masses in a nonminimal supersymmetric Standard Model, Z. Phys. C 59 (1993) 575 [INSPIRE].ADSGoogle Scholar
  86. [86]
    T. Elliott, S.F. King and P.L. White, Squark contributions to Higgs boson masses in the next-to-minimal supersymmetric standard model, Phys. Lett. B 314 (1993) 56 [hep-ph/9305282] [INSPIRE].
  87. [87]
    T. Elliott, S.F. King and P.L. White, Radiative corrections to Higgs boson masses in the next-to-minimal supersymmetric Standard Model, Phys. Rev. D 49 (1994) 2435 [hep-ph/9308309] [INSPIRE].
  88. [88]
    F. Staub, W. Porod and B. Herrmann, The Electroweak sector of the NMSSM at the one-loop level, JHEP 10 (2010) 040 [arXiv:1007.4049] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  89. [89]
    M.D. Goodsell, K. Nickel and F. Staub, Two-loop corrections to the Higgs masses in the NMSSM, Phys. Rev. D 91 (2015) 035021 [arXiv:1411.4665] [INSPIRE].ADSGoogle Scholar
  90. [90]
    M. Mühlleitner, D.T. Nhung, H. Rzehak and K. Walz, Two-loop contributions of the order \( \mathcal{O}\left({\alpha}_t{\alpha}_s\right) \) to the masses of the Higgs bosons in the CP-violating NMSSM, JHEP 05 (2015) 128 [arXiv:1412.0918] [INSPIRE].
  91. [91]
    S.P. Martin, Three-loop Standard Model effective potential at leading order in strong and top Yukawa couplings, Phys. Rev. D 89 (2014) 013003 [arXiv:1310.7553] [INSPIRE].ADSGoogle Scholar
  92. [92]
    S.P. Martin, Taming the Goldstone contributions to the effective potential, Phys. Rev. D 90 (2014) 016013 [arXiv:1406.2355] [INSPIRE].ADSGoogle Scholar
  93. [93]
    J. Elias-Miro, J.R. Espinosa and T. Konstandin, Taming Infrared Divergences in the Effective Potential, JHEP 08 (2014) 034 [arXiv:1406.2652] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    F. Staub et al., Higgs mass predictions of public NMSSM spectrum generators, Comput. Phys. Commun. 202 (2016) 113 [arXiv:1507.05093] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  95. [95]
    S.F. King, S. Moretti and R. Nevzorov, Theory and phenomenology of an exceptional supersymmetric standard model, Phys. Rev. D 73 (2006) 035009 [hep-ph/0510419] [INSPIRE].
  96. [96]
    S.F. King, S. Moretti and R. Nevzorov, Exceptional supersymmetric standard model, Phys. Lett. B 634 (2006) 278 [hep-ph/0511256] [INSPIRE].
  97. [97]
    P. Athron et al., Aspects of the exceptional supersymmetric standard model, Nucl. Phys. Proc. Suppl. 200-202 (2010) 120 [INSPIRE].
  98. [98]
    P. Athron, S.F. King, D.J. Miller, S. Moretti and R. Nevzorov, The Constrained Exceptional Supersymmetric Standard Model, Phys. Rev. D 80 (2009) 035009 [arXiv:0904.2169] [INSPIRE].ADSGoogle Scholar
  99. [99]
    P. Athron, S.F. King, D.J. Miller, S. Moretti and R. Nevzorov, Constrained Exceptional Supersymmetric Standard Model with a Higgs Near 125 GeV, Phys. Rev. D 86 (2012) 095003 [arXiv:1206.5028] [INSPIRE].ADSGoogle Scholar
  100. [100]
    P. Athron, D. Stockinger and A. Voigt, Threshold Corrections in the Exceptional Supersymmetric Standard Model, Phys. Rev. D 86 (2012) 095012 [arXiv:1209.1470] [INSPIRE].ADSGoogle Scholar
  101. [101]
    P. Athron, D. Harries, R. Nevzorov and A.G. Williams, E 6 Inspired SUSY benchmarks, dark matter relic density and a 125 GeV Higgs, Phys. Lett. B 760 (2016) 19 [arXiv:1512.07040] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    G.D. Kribs, E. Poppitz and N. Weiner, Flavor in supersymmetry with an extended R-symmetry, Phys. Rev. D 78 (2008) 055010 [arXiv:0712.2039] [INSPIRE].ADSGoogle Scholar
  103. [103]
    P. Dießner, J. Kalinowski, W. Kotlarski and D. Stöckinger, Higgs boson mass and electroweak observables in the MRSSM, JHEP 12 (2014) 124 [arXiv:1410.4791] [INSPIRE].
  104. [104]
    P. Diessner, J. Kalinowski, W. Kotlarski and D. Stöckinger, Two-loop correction to the Higgs boson mass in the MRSSM, Adv. High Energy Phys. 2015 (2015) 760729 [arXiv:1504.05386] [INSPIRE].
  105. [105]
    P. Diessner, J. Kalinowski, W. Kotlarski and D. St¨ockinger, Exploring the Higgs sector of the MRSSM with a light scalar, JHEP 03 (2016) 007 [arXiv:1511.09334] [INSPIRE].
  106. [106]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].
  107. [107]
    J. Braathen, M.D. Goodsell and P. Slavich, Leading two-loop corrections to the Higgs boson masses in SUSY models with Dirac gauginos, JHEP 09 (2016) 045 [arXiv:1606.09213] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Peter Athron
    • 1
  • Jae-hyeon Park
    • 2
  • Tom Steudtner
    • 3
  • Dominik Stöckinger
    • 3
  • Alexander Voigt
    • 4
  1. 1.ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics and AstronomyMonash UniversityMelbourneAustralia
  2. 2.Quantum Universe CenterKorea Institute for Advanced StudySeoulRepublic of Korea
  3. 3.Institut für Kern- und Teilchenphysik, TU DresdenDresdenGermany
  4. 4.Deutsches Elektronen-Synchrotron DESYHamburgGermany

Personalised recommendations