Nonstandard neutrino interactions at DUNE, T2HK and T2HKK

  • Jiajun LiaoEmail author
  • Danny Marfatia
  • Kerry Whisnant
Open Access
Regular Article - Theoretical Physics


We study the matter effect caused by nonstandard neutrino interactions (NSI) in the next generation long-baseline neutrino experiments, DUNE, T2HK and T2HKK. If multiple NSI parameters are nonzero, the potential of these experiments to detect CP violation, determine the mass hierarchy and constrain NSI is severely impaired by degeneracies between the NSI parameters and by the generalized mass hierarchy degeneracy. In particular, a cancellation between leading order terms in the appearance channels when ϵ = cot θ 23 ϵ , strongly affects the sensitivities to these two NSI parameters at T2HK and T2HKK. We also study the dependence of the sensitivities on the true CP phase δ and the true mass hierarchy, and find that overall DUNE has the best sensitivity to the magnitude of the NSI parameters, while T2HKK has the best sensitivity to CP violation whether or not there are NSI. Furthermore, for T2HKK a smaller off-axis angle for the Korean detector is better overall. We find that due to the structure of the leading order terms in the appearance channel probabilities, the NSI sensitivities in a given experiment are similar for both mass hierarchies, modulo the phase change δδ + 180°.


Beyond Standard Model CP violation Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  2. [2]
    T. Ohlsson, Status of non-standard neutrino interactions, Rept. Prog. Phys. 76 (2013) 044201 [arXiv:1209.2710] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    O.G. Miranda and H. Nunokawa, Non standard neutrino interactions: current status and future prospects, New J. Phys. 17 (2015) 095002 [arXiv:1505.06254] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    C. Biggio, M. Blennow and E. Fernandez-Martinez, General bounds on non-standard neutrino interactions, JHEP 08 (2009) 090 [arXiv:0907.0097] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].ADSGoogle Scholar
  6. [6]
    M.M. Guzzo, A. Masiero and S.T. Petcov, On the MSW effect with massless neutrinos and no mixing in the vacuum, Phys. Lett. B 260 (1991) 154 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Blennow, T. Ohlsson and J. Skrotzki, Effects of non-standard interactions in the MINOS experiment, Phys. Lett. B 660 (2008) 522 [hep-ph/0702059] [INSPIRE].
  8. [8]
    J. Kopp, P.A.N. Machado and S.J. Parke, Interpretation of MINOS data in terms of non-standard neutrino interactions, Phys. Rev. D 82 (2010) 113002 [arXiv:1009.0014] [INSPIRE].ADSGoogle Scholar
  9. [9]
    MINOS collaboration, P. Adamson et al., Search for flavor-changing non-standard neutrino interactions by MINOS, Phys. Rev. D 88 (2013) 072011 [arXiv:1303.5314] [INSPIRE].
  10. [10]
    MINOS collaboration, P. Adamson et al., A search for flavor-changing non-standard neutrino interactions using ν e appearance in MINOS, Phys. Rev. Lett. (2016) [arXiv:1605.06169] [INSPIRE].
  11. [11]
    T2K collaboration, K. Abe et al., The T2K Experiment, Nucl. Instrum. Meth. A 659 (2011) 106 [arXiv:1106.1238] [INSPIRE].
  12. [12]
    NOvA collaboration, D.S. Ayres et al., NOvA: Proposal to build a 30 kiloton off-axis detector to study ν(μ) → ν(e) oscillations in the NuMI beamline, hep-ex/0503053 [INSPIRE].
  13. [13]
    A. Friedland and I.M. Shoemaker, Searching for Novel Neutrino Interactions at NOvA and Beyond in Light of Large θ 13, arXiv:1207.6642 [INSPIRE].
  14. [14]
    J.A.B. Coelho, T. Kafka, W.A. Mann, J. Schneps and O. Altinok, Constraints for non-standard interaction ϵ V e from ν e appearance in MINOS and T2K, Phys. Rev. D 86 (2012) 113015 [arXiv:1209.3757] [INSPIRE].ADSGoogle Scholar
  15. [15]
    D.V. Forero and P. Huber, Hints for leptonic CP-violation or New Physics?, Phys. Rev. Lett. 117 (2016) 031801 [arXiv:1601.03736] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Liao, D. Marfatia and K. Whisnant, Nonmaximal neutrino mixing at NOvA from nonstandard interactions, arXiv:1609.01786 [INSPIRE].
  17. [17]
    S. Fukasawa, M. Ghosh and O. Yasuda, Is nonstandard interaction a solution to the three neutrino tensions?, arXiv:1609.04204 [INSPIRE].
  18. [18]
    J. Liao, D. Marfatia and K. Whisnant, Degeneracies in long-baseline neutrino experiments from nonstandard interactions, Phys. Rev. D 93 (2016) 093016 [arXiv:1601.00927] [INSPIRE].ADSGoogle Scholar
  19. [19]
    DUNE collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE). Volume 2: The Physics Program for DUNE at LBNF, arXiv:1512.06148 [INSPIRE].
  20. [20]
    Hyper-Kamiokande proto- collaboration, K. Abe et al., Hyper-Kamiokande, Design Report, KEK Preprint 2016-21 and ICRR-Report-701-2016-1 (2016),
  21. [21]
    Hyper-Kamiokande proto- collaboration, K. Abe et al., Physics Potentials with the Second Hyper-Kamiokande Detector in Korea, arXiv:1611.06118 [INSPIRE].
  22. [22]
    M. Masud, A. Chatterjee and P. Mehta, Probing CP-violation signal at DUNE in presence of non-standard neutrino interactions, J. Phys. G 43 (2016) 095005 [arXiv:1510.08261] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. de Gouvêa and K.J. Kelly, Non-standard Neutrino Interactions at DUNE, Nucl. Phys. B 908 (2016) 318 [arXiv:1511.05562] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    K. Huitu, T.J. Kärkkäinen, J. Maalampi and S. Vihonen, Constraining the nonstandard interaction parameters in long baseline neutrino experiments, Phys. Rev. D 93 (2016) 053016 [arXiv:1601.07730] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Masud and P. Mehta, Nonstandard interactions spoiling the CP-violation sensitivity at DUNE and other long baseline experiments, Phys. Rev. D 94 (2016) 013014 [arXiv:1603.01380] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. Masud and P. Mehta, Nonstandard interactions and resolving the ordering of neutrino masses at DUNE and other long baseline experiments, Phys. Rev. D 94 (2016) 053007 [arXiv:1606.05662] [INSPIRE].ADSGoogle Scholar
  27. [27]
    P. Coloma, Non-Standard Interactions in propagation at the Deep Underground Neutrino Experiment, JHEP 03 (2016) 016 [arXiv:1511.06357] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S.K. Agarwalla, S.S. Chatterjee and A. Palazzo, Degeneracy between θ 23 octant and neutrino non-standard interactions at DUNE, Phys. Lett. B 762 (2016) 64 [arXiv:1607.01745] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    H. Oki and O. Yasuda, Sensitivity of the T2KK experiment to the non-standard interaction in propagation, Phys. Rev. D 82 (2010) 073009 [arXiv:1003.5554] [INSPIRE].ADSGoogle Scholar
  30. [30]
    S. Fukasawa, M. Ghosh and O. Yasuda, Sensitivity of the T2HKK experiment to the non-standard interaction, arXiv:1611.06141 [INSPIRE].
  31. [31]
    P. Coloma and T. Schwetz, Generalized mass ordering degeneracy in neutrino oscillation experiments, Phys. Rev. D 94 (2016) 055005 [arXiv:1604.05772] [INSPIRE].ADSGoogle Scholar
  32. [32]
  33. [33]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].
  34. [34]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].
  35. [35]
    DUNE collaboration, T. Alion et al., Experiment Simulation Configurations Used in DUNE CDR, arXiv:1606.09550 [INSPIRE].
  36. [36]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Kopp, M. Lindner, T. Ota and J. Sato, Non-standard neutrino interactions in reactor and superbeam experiments, Phys. Rev. D 77 (2008) 013007 [arXiv:0708.0152] [INSPIRE].ADSGoogle Scholar
  38. [38]
    J. Kopp, T. Ota and W. Winter, Neutrino factory optimization for non-standard interactions, Phys. Rev. D 78 (2008) 053007 [arXiv:0804.2261] [INSPIRE].ADSGoogle Scholar
  39. [39]
    A.M. Dziewonski and D.L. Anderson, Preliminary reference earth model, Phys. Earth Planet. Inter. 25 (1981) 297.ADSCrossRefGoogle Scholar
  40. [40]
    M.C. Gonzalez-Garcia and M. Maltoni, Determination of matter potential from global analysis of neutrino oscillation data, JHEP 09 (2013) 152 [arXiv:1307.3092] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    V. Barger, D. Marfatia and K. Whisnant, Breaking eight fold degeneracies in neutrino CP-violation, mixing and mass hierarchy, Phys. Rev. D 65 (2002) 073023 [hep-ph/0112119] [INSPIRE].
  42. [42]
    T. Kikuchi, H. Minakata and S. Uchinami, Perturbation Theory of Neutrino Oscillation with Nonstandard Neutrino Interactions, JHEP 03 (2009) 114 [arXiv:0809.3312] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    K. Asano and H. Minakata, Large-Theta(13) Perturbation Theory of Neutrino Oscillation for Long-Baseline Experiments, JHEP 06 (2011) 022 [arXiv:1103.4387] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    P. Bakhti and Y. Farzan, Shedding light on LMA-Dark solar neutrino solution by medium baseline reactor experiments: JUNO and RENO-50, JHEP 07 (2014) 064 [arXiv:1403.0744] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    JUNO collaboration, F. An et al., Neutrino Physics with JUNO, J. Phys. G 43 (2016) 030401 [arXiv:1507.05613] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of Hawaii-ManoaHonoluluU.S.A.
  2. 2.Department of Physics and AstronomyIowa State UniversityAmesU.S.A.

Personalised recommendations