Advertisement

Pre-potential in the AdS 5 × S 5 type IIB superspace

  • Martin Poláček
  • Warren Siegel
Open Access
Regular Article - Theoretical Physics

Abstract

We found the pre-potential in the superspace with AdS 5 × S 5 background. The pre-potential appears as part of the vielbeins, without derivatives. In both subspaces (AdS 5 and S 5) we used Poincaré coordinates. We picked one bulk coordinate in AdS 5 and one bulk coordinate in S 5 to define the space-cone gauge. Such space-cone gauge destroys the bulk Lorentz covariance. However, it still preserves boundary Lorentz covariance (and gives projective superspace) SO(3, 1) ⊗ SO(4) and so symmetries of boundary CFT are manifest.

Keywords

Extended Supersymmetry Supergravity Models Superspaces AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Poláček and W. Siegel, Natural curvature for manifest T-duality, JHEP 01 (2014) 026 [arXiv:1308.6350] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    W. Siegel, Manifest duality in low-energy superstrings, in Proceedings, Strings 93 Berkeley U.S.A. (1993), M.B. Halpern, G. Rivlis and A. Sevrin eds., World Scientific, Singapore (1995), pg. 353 [hep-th/9308133] [INSPIRE].
  4. [4]
    M. Poláček and W. Siegel, T-duality off shell in 3D type II superspace, JHEP 06 (2014) 107 [arXiv:1403.6904] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    L. Andrianopoli and S. Ferrara, K-K excitations on AdS 5 × S 5 as N = 4 ‘primary’ superfields, Phys. Lett. B 430 (1998) 248 [hep-th/9803171] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    H. Ooguri, J. Rahmfeld, H. Robins and J. Tannenhauser, Holography in superspace, JHEP 07 (2000) 045 [hep-th/0007104] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    M. Hatsuda and W. Siegel, A new holographic limit of AdS 5 × S 5, Phys. Rev. D 67 (2003) 066005 [hep-th/0211184] [INSPIRE].ADSMATHGoogle Scholar
  8. [8]
    M. Hatsuda and W. Siegel, Superconformal spaces and implications for superstrings, Phys. Rev. D 77 (2008) 065017 [arXiv:0709.4605] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    W. Siegel, New superspaces/algebras for superparticles/strings, arXiv:1106.1585 [INSPIRE].
  10. [10]
    P. Heslop and P.S. Howe, On harmonic superspaces and superconformal fields in four-dimensions, Class. Quant. Grav. 17 (2000) 3743 [hep-th/0005135] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    G.G. Hartwell and P.S. Howe, (N, p, q) harmonic superspace, Int. J. Mod. Phys. A 10 (1995) 3901 [hep-th/9412147] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    H.J. Kim, L.J. Romans and P. van Nieuwenhuizen, The mass spectrum of chiral N = 2 D = 10 supergravity on S 5, Phys. Rev. D 32 (1985) 389 [INSPIRE].ADSGoogle Scholar
  13. [13]
    E. D’Hoker, S.D. Mathur, A. Matusis and L. Rastelli, The operator product expansion of N = 4 SYM and the 4 point functions of supergravity, Nucl. Phys. B 589 (2000) 38 [hep-th/9911222] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    P.S. Howe and P.C. West, The complete N = 2, D = 10 supergravity, Nucl. Phys. B 238 (1984) 181 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    W. Siegel, AdS/CFT in superspace, arXiv:1005.2317 [INSPIRE].
  18. [18]
    W. Siegel, Introduction to AdS/CFT, http://insti.physics.sunysb.edu/~siegel/sconf.pdf.
  19. [19]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    E. Witten, Twistor-like transform in ten-dimensions, Nucl. Phys. B 266 (1986) 245 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].MATHGoogle Scholar
  22. [22]
    M.T. Grisaru, P.S. Howe, L. Mezincescu, B. Nilsson and P.K. Townsend, N = 2 superstrings in a supergravity background, Phys. Lett. B 162 (1985) 116 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    E. Bergshoeff, E. Sezgin and P.K. Townsend, Superstring actions in D = 3, 4, 6, 10 curved superspace, Phys. Lett. B 169 (1986) 191 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    J.A. Shapiro and C.C. Taylor, Supergravity torsion constraints from the 10D superparticle, Phys. Lett. B 181 (1986) 67 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J.A. Shapiro and C.C. Taylor, Superspace supergravity from the superstring, Phys. Lett. B 186 (1987) 69 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Hatsuda and K. Kamimura, Classical AdS superstring mechanics, Nucl. Phys. B 611 (2001) 77 [hep-th/0106202] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    M. Hatsuda, Sugawara form for AdS superstring, Nucl. Phys. B 730 (2005) 364 [hep-th/0507047] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    M. Hatsuda, K. Kamimura and W. Siegel, Superspace with manifest T-duality from type-II superstring, JHEP 06 (2014) 039 [arXiv:1403.3887] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.C.N. Yang Institute for Theoretical PhysicsState University of New YorkStony BrookU.S.A.

Personalised recommendations