Universality of PV criticality in horizon thermodynamics

  • Devin Hansen
  • David Kubizňák
  • Robert B. Mann
Open Access
Regular Article - Theoretical Physics


We study PV criticality of black holes in Lovelock gravities in the context of horizon thermodynamics. The corresponding first law of horizon thermodynamics emerges as one of the Einstein-Lovelock equations and assumes the universal (independent of matter content) form δE = T δSP δV , where P is identified with the total pressure of all matter in the spacetime (including a cosmological constant Λ if present). We compare this approach to recent advances in extended phase space thermodynamics of asymptotically AdS black holes where the ‘standard’ first law of black hole thermodynamics is extended to include a pressure-volume term, where the pressure is entirely due to the (variable) cosmological constant. We show that both approaches are quite different in interpretation. Provided there is sufficient non-linearity in the gravitational sector, we find that horizon thermodynamics admits the same interesting black hole phase behaviour seen in the extended case, such as a Hawking-Page transition, Van der Waals like behaviour, and the presence of a triple point. We also formulate the Smarr formula in horizon thermodynamics and discuss the interpretation of the quantity E appearing in the horizon first law.


Black Holes Classical Theories of Gravity Black Holes in String Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    J.D. Bekenstein, Generalized second law of thermodynamics in black hole physics, Phys. Rev. D 9 (1974) 3292 [INSPIRE].ADSGoogle Scholar
  3. [3]
    S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  4. [4]
    J.M. Bardeen, B. Carter and S.W. Hawking, The four laws of black hole mechanics, Commun. Math. Phys. 31 (1973) 161 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    A.D. Sakharov, Vacuum quantum fluctuations in curved space and the theory of gravitation, Sov. Phys. Dokl. 12 (1968) 1040 [INSPIRE].ADSGoogle Scholar
  6. [6]
    T. Jacobson, Thermodynamics of space-time: The Einstein equation of state, Phys. Rev. Lett. 75 (1995) 1260 [gr-qc/9504004] [INSPIRE].
  7. [7]
    S.A. Hayward, Unified first law of black hole dynamics and relativistic thermodynamics, Class. Quant. Grav. 15 (1998) 3147 [gr-qc/9710089] [INSPIRE].
  8. [8]
    T. Padmanabhan, Gravity and the thermodynamics of horizons, Phys. Rept. 406 (2005) 49 [gr-qc/0311036] [INSPIRE].
  9. [9]
    T. Padmanabhan, Classical and quantum thermodynamics of horizons in spherically symmetric space-times, Class. Quant. Grav. 19 (2002) 5387 [gr-qc/0204019] [INSPIRE].
  10. [10]
    T. Padmanabhan, Thermodynamical Aspects of Gravity: New insights, Rept. Prog. Phys. 73 (2010) 046901 [arXiv:0911.5004] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    T. Padmanabhan and D. Kothawala, Lanczos-Lovelock models of gravity, Phys. Rept. 531 (2013) 115 [arXiv:1302.2151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    A. Paranjape, S. Sarkar and T. Padmanabhan, Thermodynamic route to field equations in Lancos-Lovelock gravity, Phys. Rev. D 74 (2006) 104015 [hep-th/0607240] [INSPIRE].ADSGoogle Scholar
  13. [13]
    D. Kothawala and T. Padmanabhan, Thermodynamic structure of Lanczos-Lovelock field equations from near-horizon symmetries, Phys. Rev. D 79 (2009) 104020 [arXiv:0904.0215] [INSPIRE].ADSGoogle Scholar
  14. [14]
    Y. Tian and X.-N. Wu, Thermodynamics on the Maximally Symmetric Holographic Screen and Entropy from Conical Singularities, JHEP 01 (2011) 150 [arXiv:1012.0411] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    A. Sheykhi, M.H. Dehghani and R. Dehghani, Horizon Thermodynamics and Gravitational Field Equations in Quasi-Topological Gravity, Gen. Rel. Grav. 46 (2014) 1679 [arXiv:1404.0260] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  16. [16]
    M. Akbar and R.-G. Cai, Thermodynamic Behavior of Field Equations for f(R) Gravity, Phys. Lett. B 648 (2007) 243 [gr-qc/0612089] [INSPIRE].
  17. [17]
    R.-G. Cai and N. Ohta, Horizon Thermodynamics and Gravitational Field Equations in Hořava-Lifshitz Gravity, Phys. Rev. D 81 (2010) 084061 [arXiv:0910.2307] [INSPIRE].ADSGoogle Scholar
  18. [18]
    D. Kothawala, S. Sarkar and T. Padmanabhan, Einstein’s equations as a thermodynamic identity: The cases of stationary axisymmetric horizons and evolving spherically symmetric horizons, Phys. Lett. B 652 (2007) 338 [gr-qc/0701002] [INSPIRE].
  19. [19]
    R.-G. Cai, L.-M. Cao, Y.-P. Hu and S.P. Kim, Generalized Vaidya Spacetime in Lovelock Gravity and Thermodynamics on Apparent Horizon, Phys. Rev. D 78 (2008) 124012 [arXiv:0810.2610] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    M. Akbar and R.-G. Cai, Thermodynamic Behavior of Friedmann Equations at Apparent Horizon of FRW Universe, Phys. Rev. D 75 (2007) 084003 [hep-th/0609128] [INSPIRE].ADSGoogle Scholar
  21. [21]
    R.-G. Cai and L.-M. Cao, Unified first law and thermodynamics of apparent horizon in FRW universe, Phys. Rev. D 75 (2007) 064008 [gr-qc/0611071] [INSPIRE].
  22. [22]
    Y. Gong and A. Wang, The Friedmann equations and thermodynamics of apparent horizons, Phys. Rev. Lett. 99 (2007) 211301 [arXiv:0704.0793] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    R.-G. Cai and L.-M. Cao, Thermodynamics of Apparent Horizon in Brane World Scenario, Nucl. Phys. B 785 (2007) 135 [hep-th/0612144] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    A. Sheykhi, B. Wang and R.-G. Cai, Deep Connection Between Thermodynamics and Gravity in Gauss-Bonnet Braneworld, Phys. Rev. D 76 (2007) 023515 [hep-th/0701261] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  25. [25]
    S. Chakraborty and T. Padmanabhan, Thermodynamical interpretation of the geometrical variables associated with null surfaces, Phys. Rev. D 92 (2015) 104011 [arXiv:1508.04060] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    D. Kubizňák and R.B. Mann, Black hole chemistry, Can. J. Phys. 93 (2015) 999 [arXiv:1404.2126] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    B.P. Dolan, Black holes and Boyle’s law — The thermodynamics of the cosmological constant, Mod. Phys. Lett. A 30 (2015) 1540002 [arXiv:1408.4023] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    D. Kastor, S. Ray and J. Traschen, Enthalpy and the Mechanics of AdS Black Holes, Class. Quant. Grav. 26 (2009) 195011 [arXiv:0904.2765] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    B.P. Dolan, The cosmological constant and the black hole equation of state, Class. Quant. Grav. 28 (2011) 125020 [arXiv:1008.5023] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  31. [31]
    M. Cvetič, G.W. Gibbons, D. Kubizňák and C.N. Pope, Black Hole Enthalpy and an Entropy Inequality for the Thermodynamic Volume, Phys. Rev. D 84 (2011) 024037 [arXiv:1012.2888] [INSPIRE].ADSGoogle Scholar
  32. [32]
    B.P. Dolan, D. Kastor, D. Kubizňák, R.B. Mann and J. Traschen, Thermodynamic Volumes and Isoperimetric Inequalities for de Sitter Black Holes, Phys. Rev. D 87 (2013) 104017 [arXiv:1301.5926] [INSPIRE].ADSGoogle Scholar
  33. [33]
    R.A. Hennigar, D. Kubizňák and R.B. Mann, Entropy Inequality Violations from Ultraspinning Black Holes, Phys. Rev. Lett. 115 (2015) 031101 [arXiv:1411.4309] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    D. Kubizňák and R.B. Mann, P-V criticality of charged AdS black holes, JHEP 07 (2012) 033 [arXiv:1205.0559] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    N. Altamirano, D. Kubizňák and R.B. Mann, Reentrant phase transitions in rotating anti-de Sitter black holes, Phys. Rev. D 88 (2013) 101502 [arXiv:1306.5756] [INSPIRE].ADSGoogle Scholar
  36. [36]
    S. Gunasekaran, R.B. Mann and D. Kubizňák, Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization, JHEP 11 (2012) 110 [arXiv:1208.6251] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    N. Altamirano, D. Kubizňák, R.B. Mann and Z. Sherkatghanad, Kerr-AdS analogue of triple point and solid/liquid/gas phase transition, Class. Quant. Grav. 31 (2014) 042001 [arXiv:1308.2672] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    A.M. Frassino, D. Kubizňák, R.B. Mann and F. Simovic, Multiple Reentrant Phase Transitions and Triple Points in Lovelock Thermodynamics, JHEP 09 (2014) 080 [arXiv:1406.7015] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    B.P. Dolan, A. Kostouki, D. Kubizňák and R.B. Mann, Isolated critical point from Lovelock gravity, Class. Quant. Grav. 31 (2014) 242001 [arXiv:1407.4783] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    N. Altamirano, D. Kubizňák, R.B. Mann and Z. Sherkatghanad, Thermodynamics of rotating black holes and black rings: phase transitions and thermodynamic volume, Galaxies 2 (2014) 89 [arXiv:1401.2586] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  41. [41]
    D. Kubizňák and F. Simovic, Thermodynamics of horizons: de Sitter black holes and reentrant phase transitions, Class. Quant. Grav. 33 (2016) 245001 [arXiv:1507.08630] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    B.P. Dolan, Where is the PdV term in the fist law of black hole thermodynamics?, arXiv:1209.1272 [INSPIRE].
  43. [43]
    A. Belhaj, M. Chabab, H. El Moumni and M.B. Sedra, On Thermodynamics of AdS Black Holes in Arbitrary Dimensions, Chin. Phys. Lett. 29 (2012) 100401 [arXiv:1210.4617] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Smailagic and E. Spallucci, Thermodynamical phases of a regular SAdS black hole, Int. J. Mod. Phys. D 22 (2013) 1350010 [arXiv:1212.5044] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S.H. Hendi and M.H. Vahidinia, Extended phase space thermodynamics and P-V criticality of black holes with a nonlinear source, Phys. Rev. D 88 (2013) 084045 [arXiv:1212.6128] [INSPIRE].ADSGoogle Scholar
  46. [46]
    D.-C. Zou, Y. Liu and B. Wang, Critical behavior of charged Gauss-Bonnet AdS black holes in the grand canonical ensemble, Phys. Rev. D 90 (2014) 044063 [arXiv:1404.5194] [INSPIRE].ADSGoogle Scholar
  47. [47]
    S.-W. Wei and Y.-X. Liu, Triple points and phase diagrams in the extended phase space of charged Gauss-Bonnet black holes in AdS space, Phys. Rev. D 90 (2014) 044057 [arXiv:1402.2837] [INSPIRE].ADSGoogle Scholar
  48. [48]
    J.-X. Mo, G.-Q. Li and W.-B. Liu, Another novel Ehrenfest scheme for P-V criticality of RN-AdS black holes, Phys. Lett. B 730 (2014) 111 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J.-X. Mo and W.-B. Liu, Ehrenfest scheme for P − V criticality of higher dimensional charged black holes, rotating black holes and Gauss-Bonnet AdS black holes, Phys. Rev. D 89 (2014) 084057 [arXiv:1404.3872] [INSPIRE].ADSGoogle Scholar
  50. [50]
    Y. Liu, D.-C. Zou and B. Wang, Signature of the Van der Waals like small-large charged AdS black hole phase transition in quasinormal modes, JHEP 09 (2014) 179 [arXiv:1405.2644] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    C.V. Johnson, Holographic Heat Engines, Class. Quant. Grav. 31 (2014) 205002 [arXiv:1404.5982] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  52. [52]
    C.V. Johnson, The Extended Thermodynamic Phase Structure of Taub-NUT and Taub-Bolt, Class. Quant. Grav. 31 (2014) 225005 [arXiv:1406.4533] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    A. Karch and B. Robinson, Holographic Black Hole Chemistry, JHEP 12 (2015) 073 [arXiv:1510.02472] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    E. Caceres, P.H. Nguyen and J.F. Pedraza, Holographic entanglement entropy and the extended phase structure of STU black holes, JHEP 09 (2015) 184 [arXiv:1507.06069] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    R.A. Hennigar, W.G. Brenna and R.B. Mann, P − v criticality in quasitopological gravity, JHEP 07 (2015) 077 [arXiv:1505.05517] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    B.P. Dolan, Bose condensation and branes, JHEP 10 (2014) 179 [arXiv:1406.7267] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    R. Maity, P. Roy and T. Sarkar, Black Hole Phase Transitions and the Chemical Potential, arXiv:1512.05541 [INSPIRE].
  58. [58]
    J.-L. Zhang, R.-G. Cai and H. Yu, Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in AdS 5 × S 5 spacetime, JHEP 02 (2015) 143 [arXiv:1409.5305] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    D. Kastor, S. Ray and J. Traschen, Chemical Potential in the First Law for Holographic Entanglement Entropy, JHEP 11 (2014) 120 [arXiv:1409.3521] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    S.-W. Wei and Y.-X. Liu, Insight into the Microscopic Structure of an AdS Black Hole from a Thermodynamical Phase Transition, Phys. Rev. Lett. 115 (2015) 111302 [arXiv:1502.00386] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    M.-S. Ma and R. Zhao, Stability of black holes based on horizon thermodynamics, Phys. Lett. B 751 (2015) 278 [arXiv:1511.03508] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    H. Maeda, S. Willison and S. Ray, Lovelock black holes with maximally symmetric horizons, Class. Quant. Grav. 28 (2011) 165005 [arXiv:1103.4184] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  64. [64]
    S. Aminneborg, I. Bengtsson, S. Holst and P. Peldan, Making anti-de Sitter black holes, Class. Quant. Grav. 13 (1996) 2707 [gr-qc/9604005] [INSPIRE].
  65. [65]
    W.L. Smith and R.B. Mann, Formation of topological black holes from gravitational collapse, Phys. Rev. D 56 (1997) 4942 [gr-qc/9703007] [INSPIRE].
  66. [66]
    R.B. Mann, Topological black holes: Outside looking in, gr-qc/9709039 [INSPIRE].
  67. [67]
    M.K. Parikh, The volume of black holes, Phys. Rev. D 73 (2006) 124021 [hep-th/0508108] [INSPIRE].ADSMathSciNetGoogle Scholar
  68. [68]
    W. Ballik and K. Lake, The volume of stationary black holes and the meaning of the surface gravity, arXiv:1005.1116 [INSPIRE].
  69. [69]
    W. Ballik and K. Lake, Vector volume and black holes, Phys. Rev. D 88 (2013) 104038 [arXiv:1310.1935] [INSPIRE].ADSGoogle Scholar
  70. [70]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].
  71. [71]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
  72. [72]
    E.J. Son and W. Kim, Complementary role of the pressure in the black hole thermodynamics, Phys. Rev. D 87 (2013) 067502 [arXiv:1303.0491] [INSPIRE].ADSGoogle Scholar
  73. [73]
    D. Hansen, D. Kubizňák and R. Mann, Horizon Thermodynamics from Einstein’s Equation of State, arXiv:1610.03079 [INSPIRE].
  74. [74]
    D. Kastor, S. Ray and J. Traschen, Smarr Formula and an Extended First Law for Lovelock Gravity, Class. Quant. Grav. 27 (2010) 235014 [arXiv:1005.5053] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  75. [75]
    S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    A. Ashtekar and S. Das, Asymptotically Anti-de Sitter space-times: Conserved quantities, Class. Quant. Grav. 17 (2000) L17 [hep-th/9911230] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  77. [77]
    S. Das and R.B. Mann, Conserved quantities in Kerr-anti-de Sitter space-times in various dimensions, JHEP 08 (2000) 033 [hep-th/0008028] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  78. [78]
    H. Maeda and M. Nozawa, Generalized Misner-Sharp quasi-local mass in Einstein-Gauss-Bonnet gravity, Phys. Rev. D 77 (2008) 064031 [arXiv:0709.1199] [INSPIRE].ADSGoogle Scholar
  79. [79]
    D. Hansen, D. Kubizňák and R.B. Mann, Criticality and Surface Tension in Rotating Horizon Thermodynamics, Class. Quant. Grav. 33 (2016) 165005 [arXiv:1604.06312] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  80. [80]
    D.G. Boulware and S. Deser, String Generated Gravity Models, Phys. Rev. Lett. 55 (1985) 2656 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Devin Hansen
    • 1
    • 2
  • David Kubizňák
    • 1
    • 2
  • Robert B. Mann
    • 2
  1. 1.Perimeter InstituteWaterlooCanada
  2. 2.Department of Physics and AstronomyUniversity of WaterlooWaterlooCanada

Personalised recommendations