Advertisement

A /L structure and alternative action for WZW-like superstring field theory

  • Keiyu Goto
  • Hiroaki Matsunaga
Open Access
Regular Article - Theoretical Physics

Abstract

We propose new gauge invariant actions for open NS, heterotic NS, and closed NS-NS superstring field theories. They are based on the large Hilbert space, and have Wess-Zumino-Witten-like expressions which are the \( {\mathrm{\mathbb{Z}}}_2 \)-reversed versions of the conventional WZW-like actions. On the basis of the procedure proposed in arXiv:1505.01659, we show that our new WZW-like actions are completely equivalent to A /L actions proposed in arXiv:1403.0940 respectively.

Keywords

String Field Theory Superstrings and Heterotic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Sen, Gauge invariant 1PI effective superstring field theory: inclusion of the Ramond sector, JHEP 08 (2015) 025 [arXiv:1501.00988] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    H. Kunitomo and Y. Okawa, Complete action for open superstring field theory, Prog. Theor. Exp. Phys. 2016 (2016) 023B01 [arXiv:1508.00366] [INSPIRE].
  3. [3]
    A. Sen, BV master action for heterotic and type II string field theories, JHEP 02 (2016) 087 [arXiv:1508.05387] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    H. Matsunaga, Comments on complete actions for open superstring field theory, JHEP 11 (2016) 115 [arXiv:1510.06023] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Sen, Covariant action for type IIB supergravity, JHEP 07 (2016) 017 [arXiv:1511.08220] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    T. Erler, S. Konopka and I. Sachs, Resolving Witten’s superstring field theory, JHEP 04 (2014) 150 [arXiv:1312.2948] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    T. Erler, S. Konopka and I. Sachs, NS-NS sector of closed superstring field theory, JHEP 08 (2014) 158 [arXiv:1403.0940] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    T. Erler, S. Konopka and I. Sachs, Ramond equations of motion in superstring field theory, JHEP 11 (2015) 199 [arXiv:1506.05774] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    S. Konopka, The S-matrix of superstring field theory, JHEP 11 (2015) 187 [arXiv:1507.08250] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    E. Witten, Interacting field theory of open superstrings, Nucl. Phys. B 276 (1986) 291 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    C. Wendt, Scattering amplitudes and contact interactions in Witten’s superstring field theory, Nucl. Phys. B 314 (1989) 209 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    I. Ya. Arefeva, P.B. Medvedev and A.P. Zubarev, New representation for string field solves the consistency problem for open superstring field theory, Nucl. Phys. B 341 (1990) 464 [INSPIRE].
  13. [13]
    C.R. Preitschopf, C.B. Thorn and S.A. Yost, Superstring field theory, Nucl. Phys. B 337 (1990) 363 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    R. Saroja and A. Sen, Picture changing operators in closed fermionic string field theory, Phys. Lett. B 286 (1992) 256 [hep-th/9202087] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    B. Jurčo and K. Muenster, Type II superstring field theory: geometric approach and operadic description, JHEP 04 (2013) 126 [arXiv:1303.2323] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  16. [16]
    N. Berkovits, Super-Poincaré invariant superstring field theory, Nucl. Phys. B 450 (1995) 90 [Erratum ibid. B 459 (1996) 439] [hep-th/9503099] [INSPIRE].
  17. [17]
    N. Berkovits, A new approach to superstring field theory, Fortsch. Phys. 48 (2000) 31 [hep-th/9912121] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    Y. Okawa and B. Zwiebach, Heterotic string field theory, JHEP 07 (2004) 042 [hep-th/0406212] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    N. Berkovits, Y. Okawa and B. Zwiebach, WZW-like action for heterotic string field theory, JHEP 11 (2004) 038 [hep-th/0409018] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    H. Matsunaga, Construction of a gauge-invariant action for type II superstring field theory, arXiv:1305.3893 [INSPIRE].
  21. [21]
    H. Matsunaga, Nonlinear gauge invariance and WZW-like action for NS-NS superstring field theory, JHEP 09 (2015) 011 [arXiv:1407.8485] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  22. [22]
    N. Berkovits and C.T. Echevarria, Four point amplitude from open superstring field theory, Phys. Lett. B 478 (2000) 343 [hep-th/9912120] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    Y. Iimori, T. Noumi, Y. Okawa and S. Torii, From the Berkovits formulation to the Witten formulation in open superstring field theory, JHEP 03 (2014) 044 [arXiv:1312.1677] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    N. Berkovits, The Ramond sector of open superstring field theory, JHEP 11 (2001) 047 [hep-th/0109100] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    Y. Michishita, A covariant action with a constraint and Feynman rules for fermions in open superstring field theory, JHEP 01 (2005) 012 [hep-th/0412215] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    H. Kunitomo, The Ramond sector of heterotic string field theory, Prog. Theor. Exp. Phys. 2014 (2014) 043B01 [arXiv:1312.7197] [INSPIRE].
  27. [27]
    H. Kunitomo, First-order equations of motion for heterotic string field theory, Prog. Theor. Exp. Phys. 2014 (2014) 093B07 [arXiv:1407.0801] [INSPIRE].
  28. [28]
    H. Kunitomo, Symmetries and Feynman rules for the Ramond sector in open superstring field theory, Prog. Theor. Exp. Phys. 2015 (2015) 033B11 [arXiv:1412.5281] [INSPIRE].
  29. [29]
    T. Erler, Y. Okawa and T. Takezaki, A structure from the Berkovits formulation of open superstring field theory, arXiv:1505.01659 [INSPIRE].
  30. [30]
    T. Erler, Relating Berkovits and A superstring field theories; small Hilbert space perspective, JHEP 10 (2015) 157 [arXiv:1505.02069] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    T. Erler, Relating Berkovits and A superstring field theories; large Hilbert space perspective, JHEP 02 (2016) 121 [arXiv:1510.00364] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    K. Goto and H. Matsunaga, On-shell equivalence of two formulations for superstring field theory, arXiv:1506.06657 [INSPIRE].
  33. [33]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal invariance, supersymmetry and string theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    E. Witten, Noncommutative geometry and string field theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    M.R. Gaberdiel and B. Zwiebach, Tensor constructions of open string theories. 1: foundations, Nucl. Phys. B 505 (1997) 569 [hep-th/9705038] [INSPIRE].
  36. [36]
    B. Zwiebach, Closed string field theory: quantum action and the B-V master equation, Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    I.A. Batalin and G.A. Vilkovisky, Gauge algebra and quantization, Phys. Lett. B 102 (1981) 27 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    I.A. Batalin and G.A. Vilkovisky, Quantization of gauge theories with linearly dependent generators, Phys. Rev. D 28 (1983) 2567 [Erratum ibid. D 30 (1984) 508] [INSPIRE].
  39. [39]
    J. Gomis, J. Paris and S. Samuel, Antibracket, antifields and gauge theory quantization, Phys. Rept. 259 (1995) 1 [hep-th/9412228] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    T. Lada and J. Stasheff, Introduction to SH Lie algebras for physicists, Int. J. Theor. Phys. 32 (1993) 1087 [hep-th/9209099] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    H. Kajiura, Noncommutative homotopy algebras associated with open strings, Rev. Math. Phys. 19 (2007) 1 [math/0306332] [INSPIRE].
  42. [42]
    E. Getzler, Lie theory for nilpotent L -algebras, math/0404003.

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of TokyoTokyoJapan
  2. 2.Institute of PhysicsAcademy of Sciences of the Czech RepublicPrague 8Czech Republic
  3. 3.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan
  4. 4.TokyoJapan

Personalised recommendations