Very Degenerate Higgsino Dark Matter

Open Access
Regular Article - Theoretical Physics


We present a study of the Very Degenerate Higgsino Dark Matter (DM), whose mass splitting between the lightest neutral and charged components is \( \mathcal{O}(1) \) MeV, much smaller than radiative splitting of 355 MeV. The scenario is realized in the minimal supersymmetric standard model by small gaugino mixings. In contrast to the pure Higgsino DM with the radiative splitting only, various observable signatures with distinct features are induced. First of all, the very small mass splitting makes (a) sizable Sommerfeld enhancement and Ramsauer-Townsend (RT) suppression relevant to ∼1 TeV Higgsino DM, and (b) Sommerfeld-Ramsauer-Townsend effect saturate at lower velocities v/c ≲ 10−3. As a result, annihilation signals can be large enough to be observed from the galactic center and/or dwarf galaxies, while the relative signal sizes can vary depending on the locations of Sommerfeld peaks and RT dips. In addition, at collider experiments, stable chargino signatures can be searched for to probe the model in the future. DM direct detection signals, however, depend on the Wino mass; even no detectable signals can be induced if the Wino is heavier than about 10 TeV.


Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    N. Arkani-Hamed, A. Delgado and G.F. Giudice, The Well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].
  2. [2]
    M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    B.S. Acharya, K. Bozek, C. Pongkitivanichkul and K. Sakurai, Prospects for observing charginos and neutralinos at a 100 TeV proton-proton collider, JHEP 02 (2015) 181 [arXiv:1410.1532] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S. Gori, S. Jung, L.-T. Wang and J.D. Wells, Prospects for Electroweakino Discovery at a 100 TeV Hadron Collider, JHEP 12 (2014) 108 [arXiv:1410.6287] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D. Barducci, A. Belyaev, A.K.M. Bharucha, W. Porod and V. Sanz, Uncovering Natural Supersymmetry via the interplay between the LHC and Direct Dark Matter Detection, JHEP 07 (2015) 066 [arXiv:1504.02472] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Badziak, A. Delgado, M. Olechowski, S. Pokorski and K. Sakurai, Detecting underabundant neutralinos, JHEP 11 (2015) 053 [arXiv:1506.07177] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Bramante, N. Desai, P. Fox, A. Martin, B. Ostdiek and T. Plehn, Towards the Final Word on Neutralino Dark Matter, Phys. Rev. D 93 (2016) 063525 [arXiv:1510.03460] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and Astrophysics of Minimal Dark Matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    E.J. Chun, J.-C. Park and S. Scopel, Non-perturbative Effect and PAMELA Limit on Electro-Weak Dark Matter, JCAP 12 (2012) 022 [arXiv:1210.6104] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Fan and M. Reece, In Wino Veritas? Indirect Searches Shed Light on Neutralino Dark Matter, JHEP 10 (2013) 124 [arXiv:1307.4400] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    E.J. Chun and J.-C. Park, Electro-Weak Dark Matter: non-perturbative effect confronting indirect detections, Phys. Lett. B 750 (2015) 372 [arXiv:1506.07522] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S.D. Thomas and J.D. Wells, Phenomenology of Massive Vectorlike Doublet Leptons, Phys. Rev. Lett. 81 (1998) 34 [hep-ph/9804359] [INSPIRE].
  13. [13]
    J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [INSPIRE].
  14. [14]
    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].
  15. [15]
    M. Cirelli, F. Sala and M. Taoso, Wino-like Minimal Dark Matter and future colliders, JHEP 10 (2014) 033 [Erratum ibid. 01 (2015) 041] [arXiv:1407.7058] [INSPIRE].
  16. [16]
    B. Bhattacherjee, B. Feldstein, M. Ibe, S. Matsumoto and T.T. Yanagida, Pure gravity mediation of supersymmetry breaking at the Large Hadron Collider, Phys. Rev. D 87 (2013) 015028 [arXiv:1207.5453] [INSPIRE].ADSGoogle Scholar
  17. [17]
    T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino Dark Matter Under Siege, JCAP 10 (2013) 061 [arXiv:1307.4082] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Cirelli, T. Hambye, P. Panci, F. Sala and M. Taoso, Gamma ray tests of Minimal Dark Matter, JCAP 10 (2015) 026 [arXiv:1507.05519] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C. Garcia-Cely, A. Ibarra, A.S. Lamperstorfer and M.H.G. Tytgat, Gamma-rays from Heavy Minimal Dark Matter, JCAP 10 (2015) 058 [arXiv:1507.05536] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Drees, M.M. Nojiri, D.P. Roy and Y. Yamada, Light Higgsino dark matter, Phys. Rev. D 56 (1997) 276 [Erratum ibid. D 64 (2001) 039901] [hep-ph/9701219] [INSPIRE].
  21. [21]
    N. Nagata and S. Shirai, Higgsino Dark Matter in High-Scale Supersymmetry, JHEP 01 (2015) 029 [arXiv:1410.4549] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    G.D. Kribs, A. Martin and T.S. Roy, Supersymmetry with a Chargino NLSP and Gravitino LSP, JHEP 01 (2009) 023 [arXiv:0807.4936] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Jung and H.-S. Lee, Untracked Signals of Supersymmetry at the LHC, arXiv:1503.00414 [INSPIRE].
  24. [24]
    M. Beneke, C. Hellmann and P. Ruiz-Femenia, Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos I. General framework and S-wave annihilation, JHEP 03 (2013) 148 [Erratum ibid. 10 (2013) 224] [arXiv:1210.7928] [INSPIRE].
  25. [25]
    C. Hellmann and P. Ruiz-Femenía, Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos II. P-wave and next-to-next-to-leading order S-wave coefficients, JHEP 08 (2013) 084 [arXiv:1303.0200] [INSPIRE].
  26. [26]
    M. Beneke, C. Hellmann and P. Ruiz-Femenia, Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos III. Computation of the Sommerfeld enhancements, JHEP 05 (2015) 115 [arXiv:1411.6924] [INSPIRE].
  27. [27]
    M. Beneke, C. Hellmann and P. Ruiz-Femenia, Heavy neutralino relic abundance with Sommerfeld enhancements — a study of pMSSM scenarios, JHEP 03 (2015) 162 [arXiv:1411.6930] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    T.R. Slatyer, The Sommerfeld enhancement for dark matter with an excited state, JCAP 02 (2010) 028 [arXiv:0910.5713] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J.D. March-Russell and S.M. West, WIMPonium and Boost Factors for Indirect Dark Matter Detection, Phys. Lett. B 676 (2009) 133 [arXiv:0812.0559] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.L. Feng, M. Kaplinghat and H.-B. Yu, Sommerfeld Enhancements for Thermal Relic Dark Matter, Phys. Rev. D 82 (2010) 083525 [arXiv:1005.4678] [INSPIRE].ADSGoogle Scholar
  31. [31]
    R. Essig, N. Sehgal, L.E. Strigari, M. Geha and J.D. Simon, Indirect Dark Matter Detection Limits from the Ultra-Faint Milky Way Satellite Segue 1, Phys. Rev. D 82 (2010) 123503 [arXiv:1007.4199] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Cannoni, Relativistic < σv rel > in the calculation of relics abundances: a closer look, Phys. Rev. D 89 (2014) 103533 [arXiv:1311.4494] [INSPIRE].ADSGoogle Scholar
  33. [33]
    K. Blum, R. Sato and T.R. Slatyer, Self-consistent Calculation of the Sommerfeld Enhancement, JCAP 06 (2016) 021 [arXiv:1603.01383] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    H.E.S.S. collaboration, A. Abramowski et al., Search for Photon-Linelike Signatures from Dark Matter Annihilations with H.E.S.S., Phys. Rev. Lett. 110 (2013) 041301 [arXiv:1301.1173] [INSPIRE].
  35. [35]
    Fermi-LAT collaboration, M. Ackermann et al., Updated search for spectral lines from Galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope, Phys. Rev. D 91 (2015) 122002 [arXiv:1506.00013] [INSPIRE].
  36. [36]
    J. Aleksić et al., Optimized dark matter searches in deep observations of Segue 1 with MAGIC, JCAP 02 (2014) 008 [arXiv:1312.1535] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    Fermi-LAT, MAGIC collaboration, M.L. Ahnen et al., Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies, JCAP 02 (2016) 039 [arXiv:1601.06590] [INSPIRE].
  38. [38]
    H.E.S.S. collaboration, V. Lefranc and E. Moulin, Dark matter search in the inner Galactic halo with H.E.S.S. I and H.E.S.S. II, PoS(ICRC2015)1208 [arXiv:1509.04123] [INSPIRE].
  39. [39]
    K.N. Abazajian and J.P. Harding, Constraints on WIMP and Sommerfeld-Enhanced Dark Matter Annihilation from HESS Observations of the Galactic Center, JCAP 01 (2012) 041 [arXiv:1110.6151] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    H.E.S.S. collaboration, A. Abramowski et al., Search for a Dark Matter annihilation signal from the Galactic Center halo with H.E.S.S, Phys. Rev. Lett. 106 (2011) 161301 [arXiv:1103.3266] [INSPIRE].
  41. [41]
    L. Bergstrom, G. Bertone, J. Conrad, C. Farnier and C. Weniger, Investigating Gamma-Ray Lines from Dark Matter with Future Observatories, JCAP 11 (2012) 025 [arXiv:1207.6773] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Ibarra, A.S. Lamperstorfer, S. López-Gehler, M. Pato and G. Bertone, On the sensitivity of CTA to gamma-ray boxes from multi-TeV dark matter, JCAP 09 (2015) 048 [arXiv:1503.06797] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    CTA collaboration, J. Carr et al., Prospects for Indirect Dark Matter Searches with the Cherenkov Telescope Array (CTA), PoS(ICRC2015)1203 [arXiv:1508.06128] [INSPIRE].
  44. [44]
    V. Lefranc, E. Moulin, P. Panci and J. Silk, Prospects for Annihilating Dark Matter in the inner Galactic halo by the Cherenkov Telescope Array, Phys. Rev. D 91 (2015) 122003 [arXiv:1502.05064] [INSPIRE].ADSGoogle Scholar
  45. [45]
    Fermi-LAT collaboration, E. Charles et al., Sensitivity Projections for Dark Matter Searches with the Fermi Large Area Telescope, Phys. Rept. 636 (2016) 1 [arXiv:1605.02016] [INSPIRE].
  46. [46]
    V. Lefranc, G.A. Mamon and P. Panci, Prospects for annihilating Dark Matter towards Milky Way’s dwarf galaxies by the Cherenkov Telescope Array, JCAP 09 (2016) 021 [arXiv:1605.02793] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    DES, Fermi-LAT collaborations, A. Drlica-Wagner et al., Search for Gamma-Ray Emission from DES Dwarf Spheroidal Galaxy Candidates with Fermi-LAT Data, Astrophys. J. 809 (2015) L4 [arXiv:1503.02632] [INSPIRE].
  48. [48]
    C. Cheung, L.J. Hall, D. Pinner and J.T. Ruderman, Prospects and Blind Spots for Neutralino Dark Matter, JHEP 05 (2013) 100 [arXiv:1211.4873] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    P. Cushman et al., Working Group Report: WIMP Dark Matter Direct Detection, arXiv:1310.8327 [INSPIRE].
  50. [50]
    C.E. Aalseth et al., The DarkSide Multiton Detector for the Direct Dark Matter Search, Adv. High Energy Phys. 2015 (2015) 541362.CrossRefGoogle Scholar
  51. [51]
    LZ collaboration, D.S. Akerib et al., LUX-ZEPLIN (LZ) Conceptual Design Report, arXiv:1509.02910 [INSPIRE].
  52. [52]
    M. Pospelov and A. Ritz, Resonant scattering and recombination of pseudo-degenerate WIMPs, Phys. Rev. D 78 (2008) 055003 [arXiv:0803.2251] [INSPIRE].ADSGoogle Scholar
  53. [53]
    Y. Bai and P.J. Fox, Resonant Dark Matter, JHEP 11 (2009) 052 [arXiv:0909.2900] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    H. An, M. Pospelov and J. Pradler, Direct constraints on charged excitations of dark matter, Phys. Rev. Lett. 109 (2012) 251302 [arXiv:1209.6358] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    C.H. Chen, M. Drees and J.F. Gunion, A Nonstandard string/SUSY scenario and its phenomenological implications, Phys. Rev. D 55 (1997) 330 [Erratum ibid. D 60 (1999) 039901] [hep-ph/9607421] [INSPIRE].
  56. [56]
    S.P. Martin, Collider signals from slow decays in supersymmetric models with an intermediate scale solution to the mu problem, Phys. Rev. D 62 (2000) 095008 [hep-ph/0005116] [INSPIRE].
  57. [57]
    S. Jung, Resolving the existence of Higgsinos in the LHC inverse problem, JHEP 06 (2014) 111 [arXiv:1404.2691] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    CMS collaboration, Constraints on the pMSSM, AMSB model and on other models from the search for long-lived charged particles in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J. C 75 (2015) 325 [arXiv:1502.02522] [INSPIRE].
  59. [59]
    M. Pospelov, Particle physics catalysis of thermal Big Bang Nucleosynthesis, Phys. Rev. Lett. 98 (2007) 231301 [hep-ph/0605215] [INSPIRE].
  60. [60]
    M. Kamionkowski and S. Profumo, Early Annihilation and Diffuse Backgrounds in Models of Weakly Interacting Massive Particles in Which the Cross Section for Pair Annihilation Is Enhanced by 1/v, Phys. Rev. Lett. 101 (2008) 261301 [arXiv:0810.3233] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S. Galli, F. Iocco, G. Bertone and A. Melchiorri, CMB constraints on Dark Matter models with large annihilation cross-section, Phys. Rev. D 80 (2009) 023505 [arXiv:0905.0003] [INSPIRE].ADSGoogle Scholar
  62. [62]
    T.R. Slatyer, N. Padmanabhan and D.P. Finkbeiner, CMB Constraints on WIMP Annihilation: Energy Absorption During the Recombination Epoch, Phys. Rev. D 80 (2009) 043526 [arXiv:0906.1197] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Eung Jin Chun
    • 1
  • Sunghoon Jung
    • 2
    • 3
  • Jong-Chul Park
    • 4
  1. 1.Korea Institute for Advanced StudySeoulKorea
  2. 2.SLAC National Accelerator LaboratoryMenlo ParkU.S.A.
  3. 3.Kavli Institute for Theoretical PhysicsSanta BarbaraU.S.A.
  4. 4.Department of PhysicsChungnam National UniversityDaejeonKorea

Personalised recommendations