Journal of High Energy Physics

, 2016:179 | Cite as

Surface operators and separation of variables

Open Access
Regular Article - Theoretical Physics


Alday, Gaiotto, and Tachikawa conjectured relations between certain 4d N = 2 supersymmetric field theories and 2d Liouville conformal field theory. We study generalizations of these relations to 4d theories with surface operators. For one type of surface operators the corresponding 2d theory is the WZW model, and for another type — the Liouville theory with insertions of extra degenerate fields. We show that these two 4d theories with surface operators exhibit an IR duality, which reflects the known relation (the so-called separation of variables) between the conformal blocks of the WZW model and the Liouville theory. Furthermore, we trace this IR duality to a brane creation construction relating systems of M5 and M2 branes in M-theory. Finally, we show that this duality may be expressed as an explicit relation between the generating functions for the changes of variables between natural sets of Darboux coordinates on the Hitchin moduli space.


Brane Dynamics in Gauge Theories Supersymmetric gauge theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    O. Aharony, IR duality in D = 3 N = 2 supersymmetric USp(2N(c)) and U(N(c)) gauge theories, Phys. Lett. B 404 (1997) 71 [hep-th/9703215] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    A. Giveon and D. Kutasov, Seiberg Duality in Chern-Simons Theory, Nucl. Phys. B 812 (2009) 1 [arXiv:0808.0360] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    K. Hori and D. Tong, Aspects of Non-Abelian Gauge Dynamics in Two-Dimensional N=(2,2) Theories, JHEP 05 (2007) 079 [hep-th/0609032] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    A. Gadde and S. Gukov, 2d Index and Surface operators, JHEP 03 (2014) 080 [arXiv:1305.0266] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    J. Gomis and B. Le Floch, M2-brane surface operators and gauge theory dualities in Toda, arXiv:1407.1852 [INSPIRE].
  7. [7]
    S. Gukov and E. Witten, Gauge Theory, Ramification, And The Geometric Langlands Program, hep-th/0612073 [INSPIRE].
  8. [8]
    S. Gukov, Gauge theory and knot homologies, Fortsch. Phys. 55 (2007) 473 [arXiv:0706.2369] [INSPIRE].CrossRefADSMathSciNetMATHGoogle Scholar
  9. [9]
    L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    L.F. Alday and Y. Tachikawa, Affine SL(2) conformal blocks from 4d gauge theories, Lett. Math. Phys. 94 (2010) 87 [arXiv:1005.4469] [INSPIRE].CrossRefADSMathSciNetMATHGoogle Scholar
  11. [11]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].CrossRefADSMathSciNetMATHGoogle Scholar
  12. [12]
    A. Braverman, Instanton counting via affine Lie algebras. I. Equivariant J -functions of (affine) flag manifolds and Whittaker vectors, in Algebraic structures and moduli spaces, vol. 38 of CRM Proc. Lecture Notes, pp. 113-132, Amer. Math. Soc., Providence, RI, U.S.A. (2004).Google Scholar
  13. [13]
    C. Kozcaz, S. Pasquetti, F. Passerini and N. Wyllard, Affine sl(N) conformal blocks from N =2 SU(N) gauge theories, JHEP 01 (2011) 045 [arXiv:1008.1412] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    A. Negut, Affine Laumon Spaces and the Calogero-Moser Integrable System, arXiv:1112.1756 [INSPIRE].
  15. [15]
    S. Nawata, Givental J-functions, Quantum integrable systems, AGT relation with surface operator, arXiv:1408.4132 [INSPIRE].
  16. [16]
    E.K. Sklyanin, Separation of variables in the Gaudin model, J. Sov. Math. 47 (1989) 2473 [INSPIRE].CrossRefMathSciNetMATHGoogle Scholar
  17. [17]
    E. Frenkel, Affine algebras, Langlands duality and Bethe ansatz, q-alg/9506003 [INSPIRE].
  18. [18]
    A.V. Stoyanovsky, A relation between the knizhnik-zamolodchikov and belavin-Polyakov-zamolodchikov systems of partial differential equations, math-ph/0012013 [INSPIRE].
  19. [19]
    S. Ribault and J. Teschner, H+(3)-WZNW correlators from Liouville theory, JHEP 06 (2005) 014 [hep-th/0502048] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    D. Gaiotto, N=2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB Approximation, arXiv:0907.3987 [INSPIRE].
  24. [24]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    N. Seiberg, Naturalness versus supersymmetric nonrenormalization theorems, Phys. Lett. B 318 (1993) 469 [hep-ph/9309335] [INSPIRE].
  26. [26]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].CrossRefMathSciNetMATHGoogle Scholar
  27. [27]
    J. Teschner, Quantization of the Hitchin moduli spaces, Liouville theory and the geometric Langlands correspondence I, Adv. Theor. Math. Phys. 15 (2011) 471 [arXiv:1005.2846] [INSPIRE].CrossRefMathSciNetMATHGoogle Scholar
  28. [28]
    V. Pestun, Localization for \( \mathcal{N}=2 \) Supersymmetric Gauge Theories in Four Dimensions, arXiv:1412.7134 [INSPIRE].
  29. [29]
    T. Okuda, Line operators in supersymmetric gauge theories and the 2d-4d relation, arXiv:1412.7126 [INSPIRE].
  30. [30]
    J. Teschner, Exact results on N=2 supersymmetric gauge theories, arXiv:1412.7145 [INSPIRE].
  31. [31]
    N.J. Hitchin, The selfduality equations on a Riemann surface, Proc. Lond. Math. Soc. 55 (1987) 59 [INSPIRE].CrossRefMathSciNetMATHGoogle Scholar
  32. [32]
    N.J. Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987) 91 [INSPIRE].CrossRefMathSciNetMATHGoogle Scholar
  33. [33]
    S. Gukov and E. Witten, Rigid Surface Operators, Adv. Theor. Math. Phys. 14 (2010) 87 [arXiv:0804.1561] [INSPIRE].CrossRefMathSciNetMATHGoogle Scholar
  34. [34]
    J. Teschner, Operator product expansion and factorization in the H+(3) WZNW model, Nucl. Phys. B 571 (2000) 555 [hep-th/9906215] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    J. Teschner and G.S. Vartanov, Supersymmetric gauge theories, quantization of \( {\mathrm{\mathcal{M}}}_{\mathrm{flat}} \) and conformal field theory, Adv. Theor. Math. Phys. 19 (2015) 1 [arXiv:1302.3778] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  36. [36]
    S.H. Katz, A. Klemm and C. Vafa, Geometric engineering of quantum field theories, Nucl. Phys. B 497 (1997) 173 [hep-th/9609239] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  37. [37]
    S. Katz, P. Mayr and C. Vafa, Mirror symmetry and exact solution of 4-D N = 2 gauge theories: 1., Adv. Theor. Math. Phys. 1 (1998) 53 [hep-th/9706110] [INSPIRE].MathSciNetGoogle Scholar
  38. [38]
    D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys. 299 (2010) 163 [arXiv:0807.4723] [INSPIRE].CrossRefADSMathSciNetMATHGoogle Scholar
  39. [39]
    S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477] [hep-th/9906070] [INSPIRE].
  40. [40]
    S. Gukov and D. Tong, D-brane probes of special holonomy manifolds and dynamics of N =1 three-dimensional gauge theories, JHEP 04 (2002) 050 [hep-th/0202126] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  41. [41]
    S. Gukov, Surface Operators, arXiv:1412.7127 [INSPIRE].
  42. [42]
    A. Hanany and K. Hori, Branes and N = 2 theories in two-dimensions, Nucl. Phys. B 513 (1998) 119 [hep-th/9707192] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  43. [43]
    A. Hanany and D. Tong, Vortices, instantons and branes, JHEP 07 (2003) 037 [hep-th/0306150] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  44. [44]
    T. Dimofte, S. Gukov and L. Hollands, Vortex Counting and Lagrangian 3-manifolds, Lett. Math. Phys. 98 (2011) 225 [arXiv:1006.0977] [INSPIRE].CrossRefADSMathSciNetMATHGoogle Scholar
  45. [45]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    P. Ramond, Field Theory: A Modern Primer, Westview Press, (2001).Google Scholar
  47. [47]
    G. Bonelli, A. Tanzini and J. Zhao, Vertices, Vortices and Interacting Surface Operators, JHEP 06 (2012) 178 [arXiv:1102.0184] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  48. [48]
    G. Bonelli, A. Tanzini and J. Zhao, The Liouville side of the Vortex, JHEP 09 (2011) 096 [arXiv:1107.2787] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  49. [49]
    J.C. Hurtubise, Integrable systems and algebraic surfaces, Duke Math. J. 83 (1996) 19.CrossRefMathSciNetMATHGoogle Scholar
  50. [50]
    A. Gorsky, N. Nekrasov and V. Rubtsov, Hilbert schemes, separated variables and D-branes, Commun. Math. Phys. 222 (2001) 299 [hep-th/9901089] [INSPIRE].CrossRefADSMathSciNetMATHGoogle Scholar
  51. [51]
    I. Krichever, Vector bundles and Lax equations on algebraic curves, Commun. Math. Phys. 229 (2002) 229 [hep-th/0108110] [INSPIRE].CrossRefADSMathSciNetMATHGoogle Scholar
  52. [52]
    W. Lerche, C. Vafa and N.P. Warner, Chiral Rings in N = 2 Superconformal Theories, Nucl. Phys. B 324 (1989) 427 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  53. [53]
    N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, arXiv:0908.4052 [INSPIRE].
  54. [54]
    Y. Hikida and V. Schomerus, H+(3) WZNW model from Liouville field theory, JHEP 10 (2007) 064 [arXiv:0706.1030] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  55. [55]
    B. Feigin and E. Frenkel, Quantization of the Drinfeld-Sokolov reduction, Phys. Lett. B 246 (1990) 75 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  56. [56]
    E. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves. AMS, (2004).Google Scholar
  57. [57]
    P. Kronheimer, A Hyper-Kahlerian Structure On Coadjoint Orbits Of A Semisimple Complex Group, J. London Math. Soc. 42 (1990) 193.CrossRefMathSciNetMATHGoogle Scholar
  58. [58]
    D. Ben-Zvi and E. Frenkel, Geometric realization of the Segal-Sugawara construction, in Topology, geometry and quantum field theory, vol. 308 of London Math. Soc. Lecture Note Ser., pp. 46-97, Cambridge University Press, Cambridge, (2004).Google Scholar
  59. [59]
    N.J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987) 59.CrossRefMathSciNetMATHGoogle Scholar
  60. [60]
    S.K. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. 55 (1987) 127.CrossRefMathSciNetMATHGoogle Scholar
  61. [61]
    K. Corlette, Flat G-bundles with canonical metrics, J. Differential Geom. 28 (1988) 361.MathSciNetMATHGoogle Scholar
  62. [62]
    C.T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988) 867.CrossRefMathSciNetMATHGoogle Scholar
  63. [63]
    C.T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. (1992) no. 75 5-95.Google Scholar
  64. [64]
    C. Simpson, The Hodge filtration on nonabelian cohomology, in Algebraic geometry-Santa Cruz 1995, vol. 62 of Proc. Sympos. Pure Math., pp. 217-281, Amer. Math. Soc., Providence, RI, U.S.A. (1997).Google Scholar
  65. [65]
    B. Dubrovin and M. Mazzocco, Canonical structure and symmetries of the Schlesinger equations, Comm. Math. Phys. 271 (2007) 289.CrossRefADSMathSciNetMATHGoogle Scholar
  66. [66]
    N. Nekrasov, A. Rosly and S. Shatashvili, Darboux coordinates, Yang-Yang functional and gauge theory, Nucl. Phys. Proc. Suppl. 216 (2011) 69 [arXiv:1103.3919] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  67. [67]
    N. Reshetikhin, The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem, Lett. Math. Phys. 26 (1992) 167.CrossRefADSMathSciNetMATHGoogle Scholar
  68. [68]
    J. Harnad, Quantum isomonodromic deformations and the Knizhnik-Zamolodchikov equations, in Symmetries and integrability of difference equations (Estérel, PQ, 1994), vol. 9 of CRM Proc. Lecture Notes, pp. 155-161, Amer. Math. Soc., Providence, RI, U.S.A. (1996).Google Scholar
  69. [69]
    N. Drukker, J. Gomis, T. Okuda and J. Teschner, Gauge Theory Loop Operators and Liouville Theory, JHEP 02 (2010) 057 [arXiv:0909.1105] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.University of CaliforniaBerkeleyU.S.A.
  2. 2.California Institute of TechnologyPasadenaU.S.A.
  3. 3.Simons Center for Geometry and PhysicsStony BrookU.S.A.
  4. 4.DESY TheoryHamburgGermany

Personalised recommendations