Journal of High Energy Physics

, 2016:125 | Cite as

Brane solutions sourced by a scalar with vanishing potential and classification of scalar branes

Open Access
Regular Article - Theoretical Physics


We derive exact brane solutions of minimally coupled Einstein-Maxwell-scalar gravity in d + 2 dimensions with a vanishing scalar potential and we show that these solutions are conformal to the Lifshitz spacetime whose dual QFT is characterized by hyperscaling violation. These solutions, together with the AdS brane and the domain wall sourced by an exponential potential, give the complete list of scalar branes sourced by a generic potential having simple (scale-covariant) scaling symmetries not involving Galilean boosts. This allows us to give a classification of both simple and interpolating brane solution of minimally coupled Einstein-Maxwell-scalar gravity having no Schrödinger isometries, which may be very useful for holographic applications.


Black Holes Holography and condensed matter physics (AdS/CMT) 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    C. Charmousis, B. Gouteraux and J. Soda, Einstein-Maxwell-dilaton theories with a Liouville potential, Phys. Rev. D 80 (2009) 024028 [arXiv:0905.3337] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of charged dilaton black holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [INSPIRE].CrossRefADSMathSciNetMATHGoogle Scholar
  4. [4]
    M. Cadoni, G. D’Appollonio and P. Pani, Phase transitions between Reissner-Nordstrom and dilatonic black holes in 4D AdS spacetime, JHEP 03 (2010) 100 [arXiv:0912.3520] [INSPIRE].CrossRefADSMathSciNetMATHGoogle Scholar
  5. [5]
    G. Bertoldi, B.A. Burrington, A.W. Peet and I.G. Zadeh, Lifshitz-like black brane thermodynamics in higher dimensions, Phys. Rev. D 83 (2011) 126006 [arXiv:1101.1980] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Cadoni, S. Mignemi and M. Serra, Exact solutions with AdS asymptotics of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field, Phys. Rev. D 84 (2011) 084046 [arXiv:1107.5979] [INSPIRE].ADSGoogle Scholar
  7. [7]
    B. Gouteraux, J. Smolic, M. Smolic, K. Skenderis and M. Taylor, Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction, JHEP 01 (2012) 089 [arXiv:1110.2320] [INSPIRE].CrossRefADSMathSciNetMATHGoogle Scholar
  8. [8]
    M. Cadoni, S. Mignemi and M. Serra, Black brane solutions and their solitonic extremal limit in Einstein-scalar gravity, Phys. Rev. D 85 (2012) 086001 [arXiv:1111.6581] [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Cadoni and S. Mignemi, Phase transition and hyperscaling violation for scalar black branes, JHEP 06 (2012) 056 [arXiv:1205.0412] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    M. Cadoni and M. Serra, Hyperscaling violation for scalar black branes in arbitrary dimensions, JHEP 11 (2012) 136 [arXiv:1209.4484] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    B. Gouteraux and E. Kiritsis, Quantum critical lines in holographic phases with (un)broken symmetry, JHEP 04 (2013) 053 [arXiv:1212.2625] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    M. Cadoni, P. Pani and M. Serra, Infrared behavior of scalar condensates in effective holographic theories, JHEP 06 (2013) 029 [arXiv:1304.3279] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].CrossRefMathSciNetMATHGoogle Scholar
  14. [14]
    G.T. Horowitz and J. Polchinski, Gauge/gravity duality, in Approaches to quantum gravity, D. Oriti ed. Cambridge University Press, Cambridge U.K. (2009), gr-qc/0602037 [INSPIRE].
  15. [15]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].CrossRefADSMathSciNetMATHGoogle Scholar
  16. [16]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    G.T. Horowitz and M.M. Roberts, Holographic superconductors with various condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [INSPIRE].ADSGoogle Scholar
  18. [18]
    C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].MATHMathSciNetGoogle Scholar
  19. [19]
    G.T. Horowitz, Introduction to holographic superconductors, Lect. Notes Phys. 828 (2011) 313 [arXiv:1002.1722].CrossRefADSMATHGoogle Scholar
  20. [20]
    M. Cadoni and P. Pani, Holography of charged dilatonic black branes at finite temperature, JHEP 04 (2011) 049 [arXiv:1102.3820] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    S.S. Gubser and F.D. Rocha, The gravity dual to a quantum critical point with spontaneous symmetry breaking, Phys. Rev. Lett. 102 (2009) 061601 [arXiv:0807.1737] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].CrossRefADSMATHGoogle Scholar
  23. [23]
    X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    K. Narayan, On Lifshitz scaling and hyperscaling violation in string theory, Phys. Rev. D 85 (2012) 106006 [arXiv:1202.5935] [INSPIRE].ADSGoogle Scholar
  25. [25]
    E. Perlmutter, Hyperscaling violation from supergravity, JHEP 06 (2012) 165 [arXiv:1205.0242] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    M. Ammon, M. Kaminski and A. Karch, Hyperscaling-violation on probe D-branes, JHEP 11 (2012) 028 [arXiv:1207.1726] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    J. Bhattacharya, S. Cremonini and A. Sinkovics, On the IR completion of geometries with hyperscaling violation, JHEP 02 (2013) 147 [arXiv:1208.1752] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  28. [28]
    M. Alishahiha and H. Yavartanoo, On holography with hyperscaling violation, JHEP 11 (2012) 034 [arXiv:1208.6197] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    P. Dey and S. Roy, Lifshitz metric with hyperscaling violation from NS5-Dp states in string theory, Phys. Lett. B 720 (2013) 419 [arXiv:1209.1049] [INSPIRE].CrossRefADSMathSciNetMATHGoogle Scholar
  30. [30]
    J. Sadeghi, B. Pourhasan and F. Pourasadollah, Thermodynamics of Schrödinger black holes with hyperscaling violation, Phys. Lett. B 720 (2013) 244 [arXiv:1209.1874] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    M. Alishahiha, E. O Colgain and H. Yavartanoo, Charged black branes with hyperscaling violating factor, JHEP 11 (2012) 137 [arXiv:1209.3946] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    B.S. Kim, Hyperscaling violation : a unified frame for effective holographic theories, JHEP 11 (2012) 061 [arXiv:1210.0540] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    M. Edalati, J.F. Pedraza and W. Tangarife Garcia, Quantum fluctuations in holographic theories with hyperscaling violation, Phys. Rev. D 87 (2013) 046001 [arXiv:1210.6993] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J. Gath, J. Hartong, R. Monteiro and N.A. Obers, Holographic models for theories with hyperscaling violation, JHEP 04 (2013) 159 [arXiv:1212.3263] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    S. Cremonini and A. Sinkovics, Spatially modulated instabilities of geometries with hyperscaling violation, JHEP 01 (2014) 099 [arXiv:1212.4172] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    M. Hassaïne, New black holes of vacuum Einstein equations with hyperscaling violation and nil geometry horizons, Phys. Rev. D 91 (2015) 084054 [arXiv:1503.01716] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    M. Bravo-Gaete, S. Gomez and M. Hassaine, Towards the Cardy formula for hyperscaling violation black holes, Phys. Rev. D 91 (2015) 124038 [arXiv:1505.00702] [INSPIRE].ADSMathSciNetGoogle Scholar
  38. [38]
    G. Kofinas, Hyperscaling violating black holes in scalar-torsion theories, Phys. Rev. D 92 (2015) 084022 [arXiv:1507.07434] [INSPIRE].ADSGoogle Scholar
  39. [39]
    A. Salvio, Holographic superfluids and superconductors in dilaton-gravity, JHEP 09 (2012) 134 [arXiv:1207.3800] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    D. Roychowdhury, Hydrodynamics from scalar black branes, JHEP 04 (2015) 162 [arXiv:1502.04345] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  41. [41]
    N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi surfaces and entanglement entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].CrossRefADSMathSciNetMATHGoogle Scholar
  42. [42]
    K. Narayan, T. Takayanagi and S.P. Trivedi, AdS plane waves and entanglement entropy, JHEP 04 (2013) 051 [arXiv:1212.4328] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  43. [43]
    K. Narayan, Non-conformal brane plane waves and entanglement entropy, Phys. Lett. B 726 (2013) 370 [arXiv:1304.6697] [INSPIRE].CrossRefADSMATHGoogle Scholar
  44. [44]
    S. Cremonini and X. Dong, Constraints on renormalization group flows from holographic entanglement entropy, Phys. Rev. D 89 (2014) 065041 [arXiv:1311.3307] [INSPIRE].ADSGoogle Scholar
  45. [45]
    K. Skenderis and P.K. Townsend, Hidden supersymmetry of domain walls and cosmologies, Phys. Rev. Lett. 96 (2006) 191301 [hep-th/0602260] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    E. Shaghoulian, FRW cosmologies and hyperscaling-violating geometries: higher curvature corrections, ultrametricity, Q-space/QFT duality and a little string theory, JHEP 03 (2014) 011 [arXiv:1308.1095] [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    M. Cadoni and M. Ciulu, Dark energy from holographic theories with hyperscaling violation, JHEP 05 (2014) 089 [arXiv:1311.4098] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    S. Mignemi and N. Pintus, An exactly solvable inflationary model, Gen. Rel. Grav. 47 (2015) 51 [arXiv:1404.4720] [INSPIRE].CrossRefADSMathSciNetMATHGoogle Scholar
  49. [49]
    M. Cadoni, E. Franzin and S. Mignemi, Inflation as de Sitter instability, arXiv:1510.04030 [INSPIRE].
  50. [50]
    M. Cadoni, Scalar black branes with non-AdS asymptotics, in the proceedings of the 13th Marcel Grossmann Meeting (MG13), July 1–7, Stockholm, Sweden (2012), R. Ruffini et al. eds., World Scientific (2013), arXiv:1305.7379 [INSPIRE].
  51. [51]
    W. Israel, Event horizons in static vacuum space-times, Phys. Rev. 164 (1967) 1776 [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    J.D. Bekenstein, Novel ‘no scalar hair’ theorem for black holes, Phys. Rev. D 51 (1995) 6608 [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    T. Hertog, Towards a novel no-hair theorem for black holes, Phys. Rev. D 74 (2006) 084008 [gr-qc/0608075] [INSPIRE].ADSMathSciNetGoogle Scholar
  54. [54]
    A.I. Janis, E.T. Newman and J. Winicour, Reality of the Schwarzschild singularity, Phys. Rev. Lett. 20 (1968) 878 [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    M. Wyman, Static spherically symmetric scalar fields in general relativity, Phys. Rev. D 24 (1981) 839 [INSPIRE].ADSMathSciNetGoogle Scholar
  56. [56]
    M. Cadoni and E. Franzin, Asymptotically flat black holes sourced by a massless scalar field, Phys. Rev. D 91 (2015) 104011 [arXiv:1503.04734] [INSPIRE].ADSMathSciNetGoogle Scholar
  57. [57]
    M. Cadoni and E. Franzin, Black holes sourced by a massless scalar, arXiv:1510.02076 [INSPIRE].
  58. [58]
    D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].ADSMathSciNetGoogle Scholar
  59. [59]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].CrossRefADSMathSciNetMATHGoogle Scholar
  60. [60]
    C. Duval, M. Hassaine and P.A. Horvathy, The geometryc of Schrödinger symmetry in gravity background/non-relativistic CFT, Annals Phys. 324 (2009) 1158 [arXiv:0809.3128] [INSPIRE].CrossRefADSMathSciNetMATHGoogle Scholar
  61. [61]
    J. Hartong, E. Kiritsis and N.A. Obers, Lifshitz space-times for Schrödinger holography, Phys. Lett. B 746 (2015) 318 [arXiv:1409.1519] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  62. [62]
    J. Hartong, E. Kiritsis and N.A. Obers, Schrödinger Invariance from Lifshitz Isometries in Holography and Field Theory, Phys. Rev. D 92 (2015) 066003 [arXiv:1409.1522] [INSPIRE].ADSGoogle Scholar
  63. [63]
    T. Andrade, C. Keeler, A. Peach and S.F. Ross, Schrödinger holography with z = 2, Class. Quant. Grav. 32 (2015) 085006 [arXiv:1412.0031] [INSPIRE].CrossRefADSMathSciNetMATHGoogle Scholar
  64. [64]
    H.J. Boonstra, K. Skenderis and P.K. Townsend, The domain wall/QFT correspondence, JHEP 01 (1999) 003 [hep-th/9807137] [INSPIRE].CrossRefADSMathSciNetMATHGoogle Scholar
  65. [65]
    I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes, JHEP 04 (2009) 062 [arXiv:0901.1487] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  66. [66]
    C. Martinez, R. Troncoso and J. Zanelli, Exact black hole solution with a minimally coupled scalar field, Phys. Rev. D 70 (2004) 084035 [hep-th/0406111] [INSPIRE].ADSMathSciNetGoogle Scholar
  67. [67]
    C. Martinez and R. Troncoso, Electrically charged black hole with scalar hair, Phys. Rev. D 74 (2006) 064007 [hep-th/0606130] [INSPIRE].ADSMathSciNetGoogle Scholar
  68. [68]
    J. de Boer, The Holographic renormalization group, in the proceedings of the Workshop on the quantum structure of space-time and the geometrical nature of fundamental interactions, October 4–10, Berlin, Germany (2000), E.A. Bergshoeff et al. eds., Wiley (2001), hep-th/0101026 [INSPIRE].
  69. [69]
    S.S. Gubser, S.S. Pufu and F.D. Rocha, Quantum critical superconductors in string theory and M-theory, Phys. Lett. B 683 (2010) 201 [arXiv:0908.0011] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  70. [70]
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].CrossRefADSMATHGoogle Scholar
  71. [71]
    S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math. Phys. 4 (2000) 679 [hep-th/0002160] [INSPIRE].MathSciNetMATHGoogle Scholar
  72. [72]
    U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: part II, JHEP 02 (2008) 019 [arXiv:0707.1349] [INSPIRE].CrossRefGoogle Scholar
  73. [73]
    U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, holography and thermodynamics of 5D dilaton-gravity, JHEP 05 (2009) 033 [arXiv:0812.0792] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Mariano Cadoni
    • 1
    • 2
  • Edgardo Franzin
    • 1
    • 2
    • 3
  • Matteo Serra
    • 4
  1. 1.Dipartimento di Fisica, Università di Cagliari, Cittadella UniversitariaMonserratoItaly
  2. 2.INFN, Sezione di CagliariCagliariItaly
  3. 3.CENTRA, Departamento de Física, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  4. 4.Dipartimento di MatematicaSapienza Università di RomaRomaItaly

Personalised recommendations