Advertisement

Seiberg-Witten curves and double-elliptic integrable systems

  • G. Aminov
  • H. W. Braden
  • A. Mironov
  • A. Morozov
  • A. Zotov
Open Access
Regular Article - Theoretical Physics

Abstract

An old conjecture claims that commuting Hamiltonians of the double-elliptic integrable system are constructed from the theta-functions associated with Riemann surfaces from the Seiberg-Witten family, with moduli treated as dynamical variables and the Seiberg-Witten differential providing the pre-symplectic structure. We describe a number of theta-constant equations needed to prove this conjecture for the N-particle system. These equations provide an alternative method to derive the Seiberg-Witten prepotential and we illustrate this by calculating the perturbative contribution. We provide evidence that the solutions to the commutativity equations are exhausted by the double-elliptic system and its degenerations (Calogero and Ruijsenaars systems). Further, the theta-function identities that lie behind the Poisson commutativity of the three-particle Hamiltonians are proven.

Keywords

Supersymmetric gauge theory Integrable Hierarchies Integrable Equations in Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485-486] [hep-th/9407087] [INSPIRE].
  2. [2]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    A. Gorsky, I. Krichever, A. Marshakov, A. Mironov and A. Morozov, Integrability and Seiberg-Witten exact solution, Phys. Lett. B 355 (1995) 466 [hep-th/9505035] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    H.W. Braden, A. Marshakov, A. Mironov and A. Morozov, On double elliptic integrable systems. 1. A duality argument for the case of SU(2), Nucl. Phys. B 573 (2000) 553 [hep-th/9906240] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    V. Fock, A. Gorsky, N. Nekrasov and V. Rubtsov, Duality in integrable systems and gauge theories, JHEP 07 (2000) 028 [hep-th/9906235] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    A. Mironov and A. Morozov, commuting hamiltonians from seiberg-witten Theta functions, Phys. Lett. B 475 (2000) 71 [hep-th/9912088] [INSPIRE].
  7. [7]
    A. Mironov and A. Morozov, Double elliptic systems: problems and perspectives, hep-th/0001168 [INSPIRE].
  8. [8]
    A. Gorsky and A. Mironov, Integrable many body systems and gauge theories, hep-th/0011197 [INSPIRE].
  9. [9]
    H.W. Braden, A. Gorsky, A. Odessky and V. Rubtsov, Double elliptic dynamical systems from generalized Mukai-Sklyanin algebras, Nucl. Phys. B 633 (2002) 414 [hep-th/0111066] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G. Aminov, A. Mironov, A. Morozov and A. Zotov, Three-particle integrable systems with elliptic dependence on momenta and Theta function identities, Phys. Lett. B 726 (2013) 802 [arXiv:1307.1465] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    S.N.M. Ruijsenaars, Complete integrability of relativistic Calogero-Moser systems and elliptic function identities, Commun. Math. Phys. 110 (1987) 191.ADSCrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    S.N.M. Ruijsenaars, Action-angle maps and scattering theory for some finite-dimensional integrable systems, Commun. Math. Phys. 115 (1988) 127.ADSCrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B 460 (1996) 299 [hep-th/9510101] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    H. Itoyama and A. Morozov, Integrability and Seiberg-Witten theory: curves and periods Nucl. Phys. B 477 (1996) 855 [hep-th/9511126] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    H. Itoyama and A. Morozov, Prepotential and the Seiberg-Witten theory, Nucl. Phys. B 491 (1997) 529 [hep-th/9512161] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    H.W. Braden, A. Marshakov, A. Mironov and A. Morozov, The Ruijsenaars-Schneider model in the context of Seiberg-Witten theory, Nucl. Phys. B 558 (1999) 371 [hep-th/9902205] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    H.W. Braden and T.J. Hollowood, The curve of compactified 6D gauge theories and integrable systems, JHEP 10 (2003) 023 [hep-th/0309074] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  18. [18]
    P. Etingoff and A. Varchenko, Traces of intertwiners for quantum groups and difference equations, I, math/9907181.
  19. [19]
    G. Felder, Y. Markov, V. Tarasov and A. Varchenko, Differential equations compatible with KZ equations, math/0001184 [INSPIRE].
  20. [20]
    V. Tarasov and A. Varchenko, Difference equations compatible with trigonometric KZ differential equations, math/0002132.
  21. [21]
    N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, arXiv:0908.4052 [INSPIRE].
  22. [22]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  23. [23]
    N. Wyllard, A N − 1 conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    A. Mironov and A. Morozov, On AGT relation in the case of U(3), Nucl. Phys. B 825 (2010) 1 [arXiv:0908.2569] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    R. Dijkgraaf and C. Vafa, Toda theories, matrix models, topological strings and N = 2 gauge systems, arXiv:0909.2453 [INSPIRE].
  26. [26]
    H. Itoyama, K. Maruyoshi and T. Oota, The quiver matrix model and 2D-4D conformal connection, Prog. Theor. Phys. 123 (2010) 957 [arXiv:0911.4244] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  27. [27]
    T. Eguchi and K. Maruyoshi, Penner type matrix model and Seiberg-Witten theory, JHEP 02 (2010) 022 [arXiv:0911.4797] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    T. Eguchi and K. Maruyoshi, Seiberg-Witten theory, matrix model and AGT relation, JHEP 07 (2010) 081 [arXiv:1006.0828] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    R. Schiappa and N. Wyllard, An A r threesome: matrix models, 2D CFTs and 4D N = 2 gauge theories, J. Math. Phys. 51 (2010) 082304 [arXiv:0911.5337] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    A. Mironov, A. Morozov and S. Shakirov, Matrix model conjecture for exact BS periods and Nekrasov functions, JHEP 02 (2010) 030 [arXiv:0911.5721] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    A. Mironov, A. Morozov and S. Shakirov, Conformal blocks as Dotsenko-Fateev integral discriminants, Int. J. Mod. Phys. A 25 (2010) 3173 [arXiv:1001.0563] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    A. Mironov and A. Morozov, Nekrasov functions and exact Bohr-Zommerfeld integrals, JHEP 04 (2010) 040 [arXiv:0910.5670] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    A. Mironov and A. Morozov, Nekrasov Functions from Exact BS Periods: The Case of SU(N), J. Phys. A 43 (2010) 195401 [arXiv:0911.2396] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    K. Maruyoshi and M. Taki, Deformed Prepotential, Quantum Integrable System and Liouville Field Theory, Nucl. Phys. B 841 (2010) 388 [arXiv:1006.4505] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    A. Marshakov, A. Mironov and A. Morozov, On AGT relations with surface operator insertion and stationary limit of beta-ensembles, J. Geom. Phys. 61 (2011) 1203 [arXiv:1011.4491] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  36. [36]
    A. Mironov, A. Morozov, Y. Zenkevich and A. Zotov, Spectral duality in integrable systems from AGT conjecture, JETP Lett. 97 (2013) 45 [arXiv:1204.0913] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Mironov, A. Morozov, B. Runov, Y. Zenkevich and A. Zotov, Spectral duality between Heisenberg chain and Gaudin model, Lett. Math. Phys. 103 (2013) 299 [arXiv:1206.6349] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  38. [38]
    A. Mironov, A. Morozov, B. Runov, Y. Zenkevich and A. Zotov, Spectral dualities in XXZ spin chains and five dimensional gauge theories, JHEP 12 (2013) 034 [arXiv:1307.1502] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    D. Gaiotto and P. Koroteev, On three dimensional quiver gauge theories and integrability, JHEP 05 (2013) 126 [arXiv:1304.0779] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    M. Aganagic, N. Haouzi, C. Kozcaz and S. Shakirov, Gauge/Liouville triality, arXiv:1309.1687 [INSPIRE].
  41. [41]
    S. Mironov, A. Morozov and Y. Zenkevich, Generalized MacDonald polynomials and five dimensional AGT conjecture, to appear.Google Scholar
  42. [42]
    A. Marshakov, Duality in integrable systems and generating functions for new Hamiltonians, Phys. Lett. B 476 (2000) 420 [hep-th/9912124] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    H.W. Braden and A. Marshakov, Singular phases of Seiberg-Witten integrable systems: weak and strong coupling, Nucl. Phys. B 595 (2001) 417 [hep-th/0009060] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    R. Donagi and E. Markman, Cubics, integrable systems, and Calabi-Yau threefolds, in the proceedings of the Hirzebruch 65 Conference on Algebraic Geometry, May 2–7, Ramat Gan, Israel (1996).Google Scholar
  45. [45]
    D. Mumford, Tata lectures on Theta I, Birkhäuser, Boston U.S.A. (1983).CrossRefMATHGoogle Scholar
  46. [46]
    D. Mumford, Tata lectures on Theta II, Birkhäuser, Boston U.S.A. (1984).MATHGoogle Scholar
  47. [47]
    J.D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Mathematics volume 352. Springer-Verlag, Berlin Germany (1973).Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • G. Aminov
    • 1
    • 2
  • H. W. Braden
    • 3
  • A. Mironov
    • 1
    • 4
    • 5
  • A. Morozov
    • 1
    • 5
  • A. Zotov
    • 1
    • 2
    • 6
  1. 1.ITEPMoscowRussia
  2. 2.Moscow Institute of Physics and Technology, Institute al.DolgoprudnyRussia
  3. 3.School of Mathematics, The King’s BuildingsUniversity of EdinburghEdinburghScotland
  4. 4.Theory DepartmentLebedev Physics InstituteMoscowRussia
  5. 5.Moscow Physical Engineering InstituteMoscowRussia
  6. 6.Steklov Mathematical InstituteRASMoscowRussia

Personalised recommendations