Advertisement

Journal of High Energy Physics

, 2014:175 | Cite as

Non-Lagrangian theories from brane junctions

  • Ling Bao
  • Vladimir Mitev
  • Elli Pomoni
  • Masato Taki
  • Futoshi Yagi
Open Access
Article

Abstract

In this article we use 5-brane junctions to study the 5D T N SCFTs corresponding to the 5D \( \mathcal{N} \) = 1 uplift of the 4D \( \mathcal{N} \) = 2 strongly coupled gauge theories, which are obtained by compactifying N M5 branes on a sphere with three full punctures. Even though these theories have no Lagrangian description, by using the 5-brane junctions proposed by Benini, Benvenuti and Tachikawa, we are able to derive their Seiberg-Witten curves and Nekrasov partition functions. We cross-check our results with the 5D super-conformal index proposed by Kim, Kim and Lee. Through the AGTW correspondence, we discuss the relations between 5D superconformal indices and n-point functions of the q-deformed W N Toda theories.

Keywords

Supersymmetry and Duality Topological Strings M-Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    N. Wyllard, A(N-1) conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP 01 (2010) 088 [arXiv:0909.1327] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    P.C. Argyres and N. Seiberg, S-duality in N = 2 supersymmetric gauge theories, JHEP 12 (2007) 088 [arXiv:0711.0054] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    O.J. Ganor and A. Hanany, Small E 8 instantons and tensionless noncritical strings, Nucl. Phys. B 474 (1996) 122 [hep-th/9602120] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B 471 (1996) 195 [hep-th/9603150] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2., Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    O.J. Ganor, A test of the chiral E 8 current algebra on a 6 − D noncritical string, Nucl. Phys. B 479 (1996) 197 [hep-th/9607020] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    A. Klemm, P. Mayr and C. Vafa, BPS states of exceptional noncritical strings, hep-th/9607139 [INSPIRE].
  15. [15]
    O.J. Ganor, Toroidal compactification of heterotic 6 − D noncritical strings down to four-dimensions, Nucl. Phys. B 488 (1997) 223 [hep-th/9608109] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    O.J. Ganor, D.R. Morrison and N. Seiberg, Branes, Calabi-Yau spaces and toroidal compactification of the N = 1 six-dimensional E 8 theory, Nucl. Phys. B 487 (1997) 93 [hep-th/9610251] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    J. Minahan, D. Nemeschansky, C. Vafa and N. Warner, E strings and N = 4 topological Yang-Mills theories, Nucl. Phys. B 527 (1998) 581 [hep-th/9802168] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    O. Aharony, A. Hanany and B. Kol, Webs of (p,q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    B. Kol, 5 − D field theories and M-theory, JHEP 11 (1999) 026 [hep-th/9705031] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    A. Brandhuber, N. Itzhaki, J. Sonnenschein, S. Theisen and S. Yankielowicz, On the M-theory approach to (compactified) 5 − D field theories, Phys. Lett. B 415 (1997) 127 [hep-th/9709010] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    L. Bao, E. Pomoni, M. Taki and F. Yagi, M5-Branes, Toric Diagrams and Gauge Theory Duality, JHEP 04 (2012) 105 [arXiv:1112.5228] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    S.H. Katz, A. Klemm and C. Vafa, Geometric engineering of quantum field theories, Nucl. Phys. B 497 (1997) 173 [hep-th/9609239] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    S. Katz, P. Mayr and C. Vafa, Mirror symmetry and exact solution of 4 − D N = 2 gauge theories: 1., Adv. Theor. Math. Phys. 1 (1998) 53 [hep-th/9706110] [INSPIRE].MathSciNetGoogle Scholar
  27. [27]
    N.C. Leung and C. Vafa, Branes and toric geometry, Adv. Theor. Math. Phys. 2 (1998) 91 [hep-th/9711013] [INSPIRE].MATHMathSciNetGoogle Scholar
  28. [28]
    A. Gorsky, S. Gukov and A. Mironov, SUSY field theories, integrable systems and their stringy/brane origin. 2., Nucl. Phys. B 518 (1998) 689 [hep-th/9710239] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes and five-dimensional E(n) field theories, JHEP 03 (1999) 006 [hep-th/9902179] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    M.R. Gaberdiel and B. Zwiebach, Exceptional groups from open strings, Nucl. Phys. B 518 (1998) 151 [hep-th/9709013] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    M.R. Douglas, S.H. Katz and C. Vafa, Small instantons, Del Pezzo surfaces and type-I-prime theory, Nucl. Phys. B 497 (1997) 155 [hep-th/9609071] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    J. Minahan, D. Nemeschansky and N. Warner, Investigating the BPS spectrum of noncritical E(n) strings, Nucl. Phys. B 508 (1997) 64 [hep-th/9705237] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    T. Eguchi and K. Sakai, Seiberg-Witten curve for the E string theory, JHEP 05 (2002) 058 [hep-th/0203025] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    T. Eguchi and K. Sakai, Seiberg-Witten curve for E string theory revisited, Adv. Theor. Math. Phys. 7 (2004) 419 [hep-th/0211213] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  35. [35]
    J.A. Minahan and D. Nemeschansky, An N = 2 superconformal fixed point with E 6 global symmetry, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    J.A. Minahan and D. Nemeschansky, Superconformal fixed points with E(n) global symmetry, Nucl. Phys. B 489 (1997) 24 [hep-th/9610076] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    J. Minahan, D. Nemeschansky and N. Warner, Partition functions for BPS states of the noncritical E 8 string, Adv. Theor. Math. Phys. 1 (1998) 167 [hep-th/9707149] [INSPIRE].MathSciNetGoogle Scholar
  38. [38]
    D.-E. Diaconescu and B. Florea, The ruled vertex and nontoric del Pezzo surfaces, JHEP 12 (2006) 028 [hep-th/0507240] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    D.-E. Diaconescu and B. Florea, The ruled vertex and D-E degenerations, JHEP 09 (2005) 044 [hep-th/0507058] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    Y. Konishi and S. Minabe, Local Gromov-Witten invariants of cubic surfaces via NEF toric degeneration, math/0607187 [INSPIRE].
  41. [41]
    K. Mohri, Exceptional string: instanton expansions and Seiberg-Witten curve, Rev. Math. Phys. 14 (2002) 913 [hep-th/0110121] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  42. [42]
    K. Sakai, Topological string amplitudes for the local half K3 surface, arXiv:1111.3967 [INSPIRE].
  43. [43]
    K. Sakai, Seiberg-Witten prepotential for E-string theory and global symmetries, JHEP 09 (2012) 077 [arXiv:1207.5739] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M.-X. Huang, A. Klemm and M. Poretschkin, Refined stable pair invariants for E-, M- and [p, q]-strings, JHEP 11 (2013) 112 [arXiv:1308.0619] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M.R. Gaberdiel, T. Hauer and B. Zwiebach, Open string-string junction transitions, Nucl. Phys. B 525 (1998) 117 [hep-th/9801205] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  46. [46]
    O. DeWolfe and B. Zwiebach, String junctions for arbitrary Lie algebra representations, Nucl. Phys. B 541 (1999) 509 [hep-th/9804210] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  47. [47]
    A. Iqbal, Selfintersection number of BPS junctions in backgrounds of three-branes and seven-branes, JHEP 10 (1999) 032 [hep-th/9807117] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  48. [48]
    O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, Constraints on the BPS spectrum of N =2, D = 4 theories with A-D-E flavor symmetry, Nucl. Phys. B 534 (1998) 261 [hep-th/9805220] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  49. [49]
    O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, Uncovering the symmetries on [p,q] seven-branes: beyond the Kodaira classification, Adv. Theor. Math. Phys. 3 (1999) 1785 [hep-th/9812028] [INSPIRE].MATHMathSciNetGoogle Scholar
  50. [50]
    O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, Uncovering infinite symmetries on [p, q] 7-branes: kac-Moody algebras and beyond, Adv. Theor. Math. Phys. 3 (1999) 1835 [hep-th/9812209] [INSPIRE].MATHMathSciNetGoogle Scholar
  51. [51]
    A. Iqbal, C. Kozcaz and C. Vafa, The refined topological vertex, JHEP 10 (2009) 069 [hep-th/0701156] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  52. [52]
    M. Taki, Refined Topological Vertex and Instanton Counting, JHEP 03 (2008) 048 [arXiv:0710.1776] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  53. [53]
    A. Iqbal and C. Vafa, BPS Degeneracies and Superconformal Index in Diverse Dimensions, arXiv:1210.3605 [INSPIRE].
  54. [54]
    H.-C. Kim, S.-S. Kim and K. Lee, 5-dim Superconformal Index with Enhanced En Global Symmetry, JHEP 10 (2012) 142 [arXiv:1206.6781] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    A. Gadde, E. Pomoni and L. Rastelli, The Veneziano Limit of N = 2 Superconformal QCD: towards the String Dual of N = 2 SU(N c) SYM with N f = 2N c, arXiv:0912.4918 [INSPIRE].
  56. [56]
    R. Gopakumar and C. Vafa, M theory and topological strings. 2., hep-th/9812127 [INSPIRE].
  57. [57]
    O. Bergman, D. Rodriguez-Gomez and G. Zafrir, Discrete theta and the 5d superconformal index, arXiv:1310.2150 [INSPIRE].
  58. [58]
    H. Awata and Y. Yamada, Five-dimensional AGT Conjecture and the Deformed Virasoro Algebra, JHEP 01 (2010) 125 [arXiv:0910.4431] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  59. [59]
    H. Awata and Y. Yamada, Five-dimensional AGT Relation and the Deformed beta-ensemble, Prog. Theor. Phys. 124 (2010) 227 [arXiv:1004.5122] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  60. [60]
    A. Mironov, A. Morozov, S. Shakirov and A. Smirnov, Proving AGT conjecture as HS duality: extension to five dimensions, Nucl. Phys. B 855 (2012) 128 [arXiv:1105.0948] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  61. [61]
    H. Itoyama, T. Oota and R. Yoshioka, 2d-4d Connection between q-Virasoro/W Block at Root of Unity Limit and Instanton Partition Function on ALE Space, Nucl. Phys. B 877 (2013) 506 [arXiv:1308.2068] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  62. [62]
    F. Nieri, S. Pasquetti and F. Passerini, 3d & 5d gauge theory partition functions as q-deformed CFT correlators, arXiv:1303.2626 [INSPIRE].
  63. [63]
    H. Hayashi, H.-C. Kim and T. Nishinaka, Topological strings and 5d T N partition functions, arXiv:1310.3854 [INSPIRE].
  64. [64]
    N. Nekrasov, Five dimensional gauge theories and relativistic integrable systems, Nucl. Phys. B 531 (1998) 323 [hep-th/9609219] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  65. [65]
    L. Bao, E. Pomoni, M. Taki and F. Yagi, M5-branes, toric diagrams and gauge theory duality, Int. J. Mod. Phys. Conf. Ser. 21 (2013) 136.CrossRefGoogle Scholar
  66. [66]
    A. Iqbal, C. Kozcaz and K. Shabbir, Refined Topological Vertex, Cylindric Partitions and the U(1) Adjoint Theory, Nucl. Phys. B 838 (2010) 422 [arXiv:0803.2260] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  67. [67]
    A. Iqbal and C. Kozcaz, Refined Topological Strings and Toric Calabi-Yau Threefolds, arXiv:1210.3016 [INSPIRE].
  68. [68]
    K. Hori et al., Mirror symmetry, Clay mathematics monographs, Vol. 1, Oxford University Press, (2003).Google Scholar
  69. [69]
    C. Kozcaz, S. Pasquetti and N. Wyllard, A & B model approaches to surface operators and Toda theories, JHEP 08 (2010) 042 [arXiv:1004.2025] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  70. [70]
    A. Iqbal and A.-K. Kashani-Poor, The vertex on a strip, Adv. Theor. Math. Phys. 10 (2006) 317 [hep-th/0410174] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  71. [71]
    P. Sulkowski, Crystal model for the closed topological vertex geometry, JHEP 12 (2006) 030 [hep-th/0606055] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  72. [72]
    I.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, (1998).Google Scholar
  73. [73]
    A. Gadde, E. Pomoni, L. Rastelli and S.S. Razamat, S-duality and 2d Topological QFT, JHEP 03 (2010) 032 [arXiv:0910.2225] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  74. [74]
    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The 4d Superconformal Index from q-deformed 2d Yang-Mills, Phys. Rev. Lett. 106 (2011) 241602 [arXiv:1104.3850] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    G. Bonelli and A. Tanzini, Hitchin systems, N = 2 gauge theories and W-gravity, Phys. Lett. B 691 (2010) 111 [arXiv:0909.4031] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  76. [76]
    L.F. Alday, F. Benini and Y. Tachikawa, Liouville/Toda central charges from M5-branes, Phys. Rev. Lett. 105 (2010) 141601 [arXiv:0909.4776] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  77. [77]
    M.-C. Tan, An M-Theoretic Derivation of a 5d and 6d AGT Correspondence and Relativistic and Elliptized Integrable Systems, JHEP 12 (2013) 031 [arXiv:1309.4775] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    G. Bonelli, A. Tanzini and J. Zhao, Vertices, Vortices and Interacting Surface Operators, JHEP 06 (2012) 178 [arXiv:1102.0184] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  79. [79]
    G. Bonelli, A. Tanzini and J. Zhao, The Liouville side of the Vortex, JHEP 09 (2011) 096 [arXiv:1107.2787] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  80. [80]
    P. Bowcock and G. Watts, Null vectors, three point and four point functions in conformal field theory, Theor. Math. Phys. 98 (1994) 350 [hep-th/9309146] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  81. [81]
    V. Fateev and A. Litvinov, Correlation functions in conformal Toda field theory. I., JHEP 11 (2007) 002 [arXiv:0709.3806] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  82. [82]
    V. Fateev and A. Litvinov, Correlation functions in conformal Toda field theory II, JHEP 01 (2009) 033 [arXiv:0810.3020] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  83. [83]
    C.A. Keller, N. Mekareeya, J. Song and Y. Tachikawa, The ABCDEFG of Instantons and W-algebras, JHEP 03 (2012) 045 [arXiv:1111.5624] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  84. [84]
    H. Nakajima and K. Yoshioka, Instanton counting on blowup. 1., Invent. Math. 162 (2005) 313 [math/0306198] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  85. [85]
    N. Nekrasov and S. Shadchin, ABCD of instantons, Commun. Math. Phys. 252 (2004) 359 [hep-th/0404225] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  86. [86]
    D. Rodríguez-Gómez and G. Zafrir, On the 5d instanton index as a Hilbert series, Nucl. Phys. B 878 (2014) 1 [arXiv:1305.5684] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    D. Gaiotto and S.S. Razamat, Exceptional Indices, JHEP 05 (2012) 145 [arXiv:1203.5517] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  88. [88]
    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge Theories and Macdonald Polynomials, Commun. Math. Phys. 319 (2013) 147 [arXiv:1110.3740] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  89. [89]
    C. Vafa, Supersymmetric Partition Functions and a String Theory in 4 Dimensions, arXiv:1209.2425 [INSPIRE].
  90. [90]
    H. Awata and H. Kanno, Instanton counting, Macdonald functions and the moduli space of D-branes, JHEP 05 (2005) 039 [hep-th/0502061] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Ling Bao
    • 1
  • Vladimir Mitev
    • 2
  • Elli Pomoni
    • 3
  • Masato Taki
    • 4
  • Futoshi Yagi
    • 5
    • 6
  1. 1.Chalmers University of Technology, Department of Fundamental PhysicsGöteborgSweden
  2. 2.Institut für Mathematik und Institut für Physik, Humboldt-Universität zu BerlinBerlinGermany
  3. 3.DESY Theory GroupHamburgGermany
  4. 4.Mathematical Physics Lab., RIKEN Nishina CenterSaitamaJapan
  5. 5.International School of Advanced Studies (SISSA) and INFN, Sezione di TriesteTriesteItaly
  6. 6.Korea Institute for Advanced Study (KIAS)SeoulKorea

Personalised recommendations