Advertisement

Journal of High Energy Physics

, 2014:128 | Cite as

Unoriented quivers with flavour

  • Massimo Bianchi
  • Gianluca Inverso
  • Jose Francisco Morales
  • Daniel Ricci Pacifici
Open Access
Article

Abstract

We discuss unoriented quivers with flavour that arise from D3-branes at local orbifold singularities, in the presence of Ω-planes and non-compact D7-branes. We produce a wide class of unoriented quiver gauge theories, including new instances of \( \mathcal{N} \) = 1 superconformal theories. We then consider unoriented D-brane instanton corrections of both ‘gauge’ and ‘exotic’ kinds. In particular, we show that conformal symmetry can be dynamically broken via the generation of exotic superpotentials. Finally we discuss aspects of the recently proposed \( \mathcal{N} \) = 1 remnant of \( \mathcal{N} \) = 4 S-duality. We identify new candidate dual pairs for the \( \mathbb{C} \) 3 / \( \mathbb{Z} \) n series of unoriented quiver gauge theories with n odd.

Keywords

Brane Dynamics in Gauge Theories Duality in Gauge Field Theories Solitons Monopoles and Instantons Conformal Field Models in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    D.R. Morrison and M.R. Plesser, Nonspherical horizons. 1, Adv. Theor. Math. Phys. 3 (1999) 1 [hep-th/9810201] [INSPIRE].MATHMathSciNetGoogle Scholar
  3. [3]
    S. Benvenuti, S. Franco, A. Hanany, D. Martelli and J. Sparks, An infinite family of superconformal quiver gauge theories with Sasaki-Einstein duals, JHEP 06 (2005) 064 [hep-th/0411264] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    S. Franco et al., Gauge theories from toric geometry and brane tilings, JHEP 01 (2006) 128 [hep-th/0505211] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [INSPIRE].
  6. [6]
    S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    A. Hanany, V. Jejjala, S. Ramgoolam and R.-K. Seong, Calabi-Yau orbifolds and torus coverings, JHEP 09 (2011) 116 [arXiv:1105.3471] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    A. Hanany and R.-K. Seong, Brane tilings and reflexive polygons, Fortsch. Phys. 60 (2012) 695 [arXiv:1201.2614] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    A. Hanany and R.-K. Seong, Brane tilings and specular duality, JHEP 08 (2012) 107 [arXiv:1206.2386] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    S. Franco et al., Dimers and orientifolds, JHEP 09 (2007) 075 [arXiv:0707.0298] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    C. Angelantonj, M. Bianchi, G. Pradisi, A. Sagnotti and Y. Stanev, Chiral asymmetry in four-dimensional open string vacua, Phys. Lett. B 385 (1996) 96 [hep-th/9606169] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    G. Aldazabal, L.E. Ibáñez, F. Quevedo and A. Uranga, D-branes at singularities: a bottom up approach to the string embedding of the standard model, JHEP 08 (2000) 002 [hep-th/0005067] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Cvetič, G. Shiu and A.M. Uranga, Three family supersymmetric standard-like models from intersecting brane worlds, Phys. Rev. Lett. 87 (2001) 201801 [hep-th/0107143] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    D. Forcella, I. Garcia-Etxebarria and A. Uranga, E3-brane instantons and baryonic operators for D3-branes on toric singularities, JHEP 03 (2009) 041 [arXiv:0806.2291] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    S. Franco, Bipartite field theories: from D-brane probes to scattering amplitudes, JHEP 11 (2012)141 [arXiv:1207.0807] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    S. Franco, D. Galloni and R.-K. Seong, New directions in bipartite field theories, JHEP 06 (2013)032 [arXiv:1211.5139] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    G. Aldazabal, D. Badagnani, L.E. Ibáñez and A. Uranga, Tadpole versus anomaly cancellation in D = 4, D = 6 compact IIB orientifolds, JHEP 06 (1999) 031 [hep-th/9904071] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Bianchi and J.F. Morales, Anomalies & tadpoles, JHEP 03 (2000) 030 [hep-th/0002149] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    A.M. Uranga, D-brane probes, RR tadpole cancellation and K-theory charge, Nucl. Phys. B 598 (2001)225 [hep-th/0011048] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    M. Billó et al., Classical gauge instantons from open strings, JHEP 02 (2003) 045 [hep-th/0211250] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Bianchi, F. Fucito and J.F. Morales, D-brane instantons on the T 6 /Z 3 orientifold, JHEP 07 (2007) 038 [arXiv:0704.0784] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    R. Argurio, M. Bertolini, G. Ferretti, A. Lerda and C. Petersson, Stringy instantons at orbifold singularities, JHEP 06 (2007) 067 [arXiv:0704.0262] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    M. Bianchi, F. Fucito and J.F. Morales, Dynamical supersymmetry breaking from unoriented D-brane instantons, JHEP 08 (2009) 040 [arXiv:0904.2156] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-brane instantons in type II orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Bianchi and M. Samsonyan, Notes on unoriented D-brane instantons, Int. J. Mod. Phys. A 24 (2009) 5737 [arXiv:0909.2173] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    M. Bianchi and G. Inverso, Unoriented D-brane instantons, Fortsch. Phys. 60 (2012) 822 [arXiv:1202.6508] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  28. [28]
    I. Garcia-Etxebarria, B. Heidenreich and T. Wrase, New N = 1 dualities from orientifold transitions. Part I. Field theory, JHEP 10 (2013) 007 [arXiv:1210.7799] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    S. Franco and A. Uranga, Bipartite field theories from D-branes, arXiv:1306.6331 [INSPIRE].
  30. [30]
    D. Lüst, S. Reffert, E. Scheidegger and S. Stieberger, Resolved toroidal orbifolds and their orientifolds, Adv. Theor. Math. Phys. 12 (2008) 67 [hep-th/0609014] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  31. [31]
    S. Reffert, Toroidal orbifolds: resolutions, orientifolds and applications in string phenomenology, hep-th/0609040 [INSPIRE].
  32. [32]
    M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D-branes at del Pezzo singularities: global embedding and moduli stabilisation, JHEP 09 (2012) 019 [arXiv:1206.5237] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D3/D7 branes at singularities: constraints from global embedding and moduli stabilisation, JHEP 07 (2013) 150 [arXiv:1304.0022] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, The web of D-branes at singularities in compact Calabi-Yau manifolds, JHEP 05 (2013) 114 [arXiv:1304.2771] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    M.J. Dolan, S. Krippendorf and F. Quevedo, Towards a systematic construction of realistic D-brane models on a del Pezzo singularity, JHEP 10 (2011) 024 [arXiv:1106.6039] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    A. Sen, F-theory and orientifolds, Nucl. Phys. B 475 (1996) 562 [hep-th/9605150] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. Banks, M.R. Douglas and N. Seiberg, Probing F-theory with branes, Phys. Lett. B 387 (1996)278 [hep-th/9605199] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    O. Aharony, A. Fayyazuddin and J.M. Maldacena, The large-N limit of N = 2, N = 1 field theories from three-branes in F-theory, JHEP 07 (1998) 013 [hep-th/9806159] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    C. Angelantonj and A. Armoni, RG flow, Wilson loops and the dilaton tadpole, Phys. Lett. B 482 (2000)329 [hep-th/0003050] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    M. Bianchi and J.F. Morales, RG flows and open/closed string duality, JHEP 08 (2000) 035 [hep-th/0006176] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    P. Ouyang, Holomorphic D7 branes and flavored N = 1 gauge theories, Nucl. Phys. B 699 (2004)207 [hep-th/0311084] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    R.G. Leigh and M. Rozali, Brane boxes, anomalies, bending and tadpoles, Phys. Rev. D 59 (1999)026004 [hep-th/9807082] [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    M. Bertolini et al., Fractional D-branes and their gauge duals, JHEP 02 (2001) 014 [hep-th/0011077] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    M. Billó, M. Frau, L. Giacone and A. Lerda, Holographic non-perturbative corrections to gauge couplings, JHEP 08 (2011) 007 [arXiv:1105.1869] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    F. Fucito, J. Morales and D.R. Pacifici, Multi instanton tests of holography, JHEP 09 (2011) 120 [arXiv:1106.3526] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Billó et al., Non-perturbative gauge/gravity correspondence in N = 2 theories, JHEP 08 (2012)166 [arXiv:1206.3914] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Bianchi, M.B. Green, S. Kovacs and G. Rossi, Instantons in supersymmetric Yang-Mills and D instantons in IIB superstring theory, JHEP 08 (1998) 013 [hep-th/9807033] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  49. [49]
    E. Witten, Baryons and branes in anti-de Sitter space, JHEP 07 (1998) 006 [hep-th/9805112] [INSPIRE].ADSGoogle Scholar
  50. [50]
    L. Ibáñez and A. Uranga, Neutrino Majorana masses from string theory instanton effects, JHEP 03 (2007) 052 [hep-th/0609213] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    R. Blumenhagen, M. Cvetič and T. Weigand, Spacetime instanton corrections in 4D string vacua: the seesaw mechanism for D-brane models, Nucl. Phys. B 771 (2007) 113 [hep-th/0609191] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Cvetič, I. Garcia-Etxebarria and J. Halverson, Global F-theory models: instantons and gauge dynamics, JHEP 01 (2011) 073 [arXiv:1003.5337] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    T.W. Grimm, M. Kerstan, E. Palti and T. Weigand, On fluxed instantons and moduli stabilisation in IIB orientifolds and F-theory, Phys. Rev. D 84 (2011) 066001 [arXiv:1105.3193] [INSPIRE].ADSGoogle Scholar
  54. [54]
    M. Bianchi, A. Collinucci and L. Martucci, Magnetized E3-brane instantons in F-theory, JHEP 12 (2011) 045 [arXiv:1107.3732] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  55. [55]
    M. Bianchi, G. Inverso and L. Martucci, Brane instantons and fluxes in F-theory, JHEP 07 (2013)037 [arXiv:1212.0024] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  56. [56]
    R. Argurio, M. Bertolini, S. Franco and S. Kachru, Meta-stable vacua and D-branes at the conifold, JHEP 06 (2007) 017 [hep-th/0703236] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  57. [57]
    C. Csáki, M. Schmaltz and W. Skiba, A systematic approach to confinement in N = 1 supersymmetric gauge theories, Phys. Rev. Lett. 78 (1997) 799 [hep-th/9610139] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    C. Csáki, M. Schmaltz and W. Skiba, Confinement in N = 1 SUSY gauge theories and model building tools, Phys. Rev. D 55 (1997) 7840 [hep-th/9612207] [INSPIRE].ADSGoogle Scholar
  59. [59]
    B. Grinstein and D.R. Nolte, Systematic study of theories with quantum modified moduli, Phys. Rev. D 57 (1998) 6471 [hep-th/9710001] [INSPIRE].ADSMathSciNetGoogle Scholar
  60. [60]
    B. Grinstein and D.R. Nolte, Systematic study of theories with quantum modified moduli. 2, Phys. Rev. D 58 (1998) 045012 [hep-th/9803139] [INSPIRE].ADSMathSciNetGoogle Scholar
  61. [61]
    M. Bianchi, S. Cremonesi, A. Hanany, J.F. Morales, D. Ricci Pacifici, R.-K. Seong, Mass deformations of dimers, work in progress.Google Scholar
  62. [62]
    M. Bianchi, G. Pradisi and A. Sagnotti, Toroidal compactification and symmetry breaking in open string theories, Nucl. Phys. B 376 (1992) 365 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  63. [63]
    M. Bianchi, A note on toroidal compactifications of the type-I superstring and other superstring vacuum configurations with sixteen supercharges, Nucl. Phys. B 528 (1998) 73 [hep-th/9711201] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  64. [64]
    E. Witten, Toroidal compactification without vector structure, JHEP 02 (1998) 006 [hep-th/9712028] [INSPIRE].ADSGoogle Scholar
  65. [65]
    C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  66. [66]
    C. Romelsberger, Calculating the superconformal index and Seiberg duality, arXiv:0707.3702 [INSPIRE].
  67. [67]
    F. Dolan and H. Osborn, Applications of the superconformal index for protected operators and q-hypergeometric identities to N = 1 dual theories, Nucl. Phys. B 818 (2009) 137 [arXiv:0801.4947] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  68. [68]
    C. Angelantonj and A. Sagnotti, Open strings, Phys. Rept. 371 (2002) 1 [Erratum ibid. 376 (2003)339] [hep-th/0204089] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Massimo Bianchi
    • 1
  • Gianluca Inverso
    • 1
  • Jose Francisco Morales
    • 1
  • Daniel Ricci Pacifici
    • 2
  1. 1.I.N.F.N. Sezione di Roma “TorVergata” and Dipartimento di FisicaUniversità di Roma “TorVergata”RomaItaly
  2. 2.Dipartimento di Fisica e AstronomiaUniversità degli Studi di Padova and I.N.F.N. Sezione di PadovaPadovaItaly

Personalised recommendations