Journal of High Energy Physics

, 2013:164 | Cite as

Light top partners for a light composite Higgs

  • Oleksii Matsedonskyi
  • Giuliano Panico
  • Andrea Wulzer


Anomalously light fermionic partners of the top quark often appear in explicit constructions, such as the 5d holographic models, where the Higgs is a light composite pseudo Nambu-Goldstone boson and its potential is generated radiatively by top quark loops. We show that this is due to a structural correlation among the mass of the partners and the one of the Higgs boson. Because of this correlation, the presence of light partners could be essential to obtain a realistic Higgs mass.

We quantitatively confirm this generic prediction, which applies to a broad class of composite Higgs models, by studying the simplest calculable framework with a composite Higgs, the Discrete Composite Higgs Model. In this setup we show analytically that the requirement of a light enough Higgs strongly constraints the fermionic spectrum and makes the light partners appear.

The light top partners thus provide the most promising manifestation of the composite Higgs scenario at the LHC. Conversely, the lack of observation of these states can put strong restrictions on the parameter space of the model. A simple analysis of the 7-TeV LHC searches presently available already gives some non-trivial constraint. The strongest bound comes from the exclusion of the 5/3-charged partner. Even if no dedicated LHC search exists for this particle, a bound of 611 GeV is derived by adapting the CMS search of bottom-like states in same-sign dileptons.


Higgs Physics Beyond Standard Model Technicolor and Composite Models 


  1. [1]
    ATLAS collaboration, Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].ADSGoogle Scholar
  3. [3]
    S. Dimopoulos and J. Preskill, Massless composites with massive constituents, Nucl. Phys. B 199 (1982)206 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSGoogle Scholar
  5. [5]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].ADSGoogle Scholar
  6. [6]
    H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys. Lett. B 143 (1984) 152 [INSPIRE].ADSGoogle Scholar
  7. [7]
    T. Banks, Constraints on SU(2) × U(1) breaking by vacuum misalignment, Nucl. Phys. B 243 (1984) 125 [INSPIRE].ADSGoogle Scholar
  8. [8]
    H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].ADSGoogle Scholar
  9. [9]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].ADSGoogle Scholar
  12. [12]
    R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G. Panico and A. Wulzer, The discrete composite Higgs model, JHEP 09 (2011) 135 [arXiv:1106.2719] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].ADSGoogle Scholar
  16. [16]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Y. Hosotani and M. Mabe, Higgs boson mass and electroweak-gravity hierarchy from dynamical gauge-Higgs unification in the warped spacetime, Phys. Lett. B 615 (2005) 257 [hep-ph/0503020] [INSPIRE].ADSGoogle Scholar
  18. [18]
    Y. Hosotani, S. Noda, Y. Sakamura and S. Shimasaki, Gauge-Higgs unification and quark-lepton phenomenology in the warped spacetime, Phys. Rev. D 73 (2006) 096006 [hep-ph/0601241] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M.S. Carena, E. Ponton, J. Santiago and C.E. Wagner, Light Kaluza Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys. B 759 (2006) 202 [hep-ph/0607106] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    M.S. Carena, E. Ponton, J. Santiago and C. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A.D. Medina, N.R. Shah and C.E.M. Wagner, Gauge-Higgs unification and radiative electroweak symmetry breaking in warped extra dimensions, Phys. Rev. D 76 (2007) 095010 [arXiv:0706.1281] [INSPIRE].ADSGoogle Scholar
  22. [22]
    L.J. Hall, Y. Nomura and D. Tucker-Smith, Gauge Higgs unification in higher dimensions, Nucl. Phys. B 639 (2002) 307 [hep-ph/0107331] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Kubo, C. Lim and H. Yamashita, The Hosotani mechanism in bulk gauge theories with an orbifold extra space S 1/Z 2, Mod. Phys. Lett. A 17 (2002) 2249 [hep-ph/0111327] [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    G. Burdman and Y. Nomura, Unification of Higgs and gauge fields in five-dimensions, Nucl. Phys. B 656 (2003) 3 [hep-ph/0210257] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    N. Haba, M. Harada, Y. Hosotani and Y. Kawamura, Dynamical rearrangement of gauge symmetry on the orbifold S 1/Z 2, Nucl. Phys. B 657 (2003) 169 [Erratum ibid. B 669 (2003) 381-382] [hep-ph/0212035] [INSPIRE].
  26. [26]
    I. Gogoladze, Y. Mimura and S. Nandi, Gauge Higgs unification on the left right model, Phys. Lett. B 560 (2003) 204 [hep-ph/0301014] [INSPIRE].MathSciNetADSGoogle Scholar
  27. [27]
    I. Gogoladze, Y. Mimura and S. Nandi, Model building with gauge-Yukawa unification, Phys. Rev. D 69 (2004) 075006 [hep-ph/0311127] [INSPIRE].ADSGoogle Scholar
  28. [28]
    C.A. Scrucca, M. Serone and L. Silvestrini, Electroweak symmetry breaking and fermion masses from extra dimensions, Nucl. Phys. B 669 (2003) 128 [hep-ph/0304220] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G. Cacciapaglia, C. Csáki and S.C. Park, Fully radiative electroweak symmetry breaking, JHEP 03 (2006) 099 [hep-ph/0510366] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G. Panico, M. Serone and A. Wulzer, A model of electroweak symmetry breaking from a fifth dimension, Nucl. Phys. B 739 (2006) 186 [hep-ph/0510373] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Sakamoto and K. Takenaga, Large gauge hierarchy in gauge-Higgs unification, Phys. Rev. D 75 (2007) 045015 [hep-th/0609067] [INSPIRE].MathSciNetADSGoogle Scholar
  32. [32]
    C. Lim and N. Maru, Towards a realistic grand gauge-Higgs unification, Phys. Lett. B 653 (2007) 320 [arXiv:0706.1397] [INSPIRE].ADSGoogle Scholar
  33. [33]
    G. Panico, M. Safari and M. Serone, Simple and realistic composite Higgs models in flat extra dimensions, JHEP 02 (2011) 103 [arXiv:1012.2875] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    G. Panico, M. Serone and A. Wulzer, Electroweak symmetry breaking and precision tests with a fifth dimension, Nucl. Phys. B 762 (2007) 189 [hep-ph/0605292] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    G. Panico, E. Ponton, J. Santiago and M. Serone, Dark Matter and electroweak symmetry breaking in models with warped extra dimensions, Phys. Rev. D 77 (2008) 115012 [arXiv:0801.1645] [INSPIRE].ADSGoogle Scholar
  36. [36]
    D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    R. Contino and G. Servant, Discovering the top partners at the LHC using same-sign dilepton final states, JHEP 06 (2008) 026 [arXiv:0801.1679] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030 [arXiv:0907.3155] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J. Mrazek and A. Wulzer, A strong sector at the LHC: top partners in same-sign dileptons, Phys. Rev. D 81 (2010) 075006 [arXiv:0909.3977] [INSPIRE].ADSGoogle Scholar
  40. [40]
    G. Dissertori, E. Furlan, F. Moortgat and P. Nef, Discovery potential of top-partners in a realistic composite Higgs model with early LHC data, JHEP 09 (2010) 019 [arXiv:1005.4414] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    C.T. Hill, S. Pokorski and J. Wang, Gauge invariant effective Lagrangian for Kaluza-Klein modes, Phys. Rev. D 64 (2001) 105005 [hep-th/0104035] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S. De Curtis, M. Redi and A. Tesi, The 4D composite Higgs, JHEP 04 (2012) 042 [arXiv:1110.1613] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    H.-C. Cheng, J. Thaler and L.-T. Wang, Little M-theory, JHEP 09 (2006) 003 [hep-ph/0607205] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    R. Foadi, J.T. Laverty, C.R. Schmidt and J.-H. Yu, Radiative electroweak symmetry breaking in a little Higgs model, JHEP 06 (2010) 026 [arXiv:1001.0584] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Baumgart, The advantages of four dimensions for composite Higgs models, arXiv:0706.1380 [INSPIRE].
  47. [47]
    CMS collaboration, Search for heavy bottom-like quarks in 4.9 inverse femtobarns of pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 05 (2012) 123 [arXiv:1204.1088] [INSPIRE].ADSGoogle Scholar
  48. [48]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J. Galloway, J.A. Evans, M.A. Luty and R.A. Tacchi, Minimal conformal technicolor and precision electroweak tests, JHEP 10 (2010) 086 [arXiv:1001.1361] [INSPIRE].Google Scholar
  50. [50]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological lagrangians. 1, Phys. Rev. 177 (1969) 2239 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    J. Mrazek et al., The other natural two Higgs doublet model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    G. Panico and A. Wulzer, Effective action and holography in 5D gauge theories, JHEP 05 (2007) 060 [hep-th/0703287] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs search at the LHC, JHEP 05 (2010) 065 [arXiv:1003.3251] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs under LHC experimental scrutiny, EPJ Web Conf. 28 (2012) 08004 [arXiv:1202.1286] [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    CDF collaboration, T. Aaltonen et al., Search for new bottomlike quark pair decays \( Q\overline{Q}\to \left( {t{W^{\pm }}} \right)\left( {\overline{t}{W^{\pm }}} \right) \) in same-charge dilepton events, Phys. Rev. Lett. 104 (2010) 091801 [arXiv:0912.1057] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    ATLAS collaboration, Search for same-sign top-quark production and fourth-generation down-type quarks in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 04 (2012) 069 [arXiv:1202.5520] [INSPIRE].ADSGoogle Scholar
  59. [59]
    ATLAS collaboration, Search for down-type fourth generation quarks with the ATLAS detector in events with one lepton and hadronically decaying W bosons, Phys. Rev. Lett. 109 (2012) 032001 [arXiv:1202.6540] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    CMS collaboration, Search for a vector-like quark with charge 2/3 in t + Z events from pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 107 (2011) 271802 [arXiv:1109.4985] [INSPIRE].CrossRefGoogle Scholar
  61. [61]
    CMS collaboration, Search for t pair production in lepton+jets channel, CMS-PAS-EXO-11-099 (2011).
  62. [62]
    CMS collaboration, Search for a heavy top-like quark in the dilepton final state in pp collisions at 7 TeV, CMS-PAS-EXO-11-050 (2011).
  63. [63]
    ATLAS collaboration, Search for pair production of a heavy up-type quark decaying to a W boson and a b quark in the lepton+jets channel with the ATLAS detector, Phys. Rev. Lett. 108 (2012) 261802 [arXiv:1202.3076] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    D. Marzocca and M. Serone, The impact of a light Higgs on general composite Higgs models, work in progress.Google Scholar
  65. [65]
    M. Redi and A. Tesi, Implications of a light Higgs in composite models, work in progress.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Oleksii Matsedonskyi
    • 1
  • Giuliano Panico
    • 2
  • Andrea Wulzer
    • 1
    • 2
  1. 1.Dipartimento di Fisica e Astronomia and INFN — Sezione di PadovaPadovaItaly
  2. 2.Institute for Theoretical Physics, ETH ZurichZurichSwitzerland

Personalised recommendations