Advertisement

Journal of High Energy Physics

, 2013:159 | Cite as

3d superconformal indices and isomorphisms of M2-brane theories

Article

Abstract

We test several expected isomorphisms between the U(N) × U(N) ABJM theory and (SU(N) × SU(N))/\( {{\mathbb{Z}}_N} \) theory including the BLG theory by comparing their superconformal indices. From moduli space analysis, it is expected that this equivalence can hold if and only if the rank N and Chern-Simons level k are coprime. We also calculate the index of the ABJ theory and investigate whether some theories with identical moduli spaces are isomorphic or not.

Keywords

Supersymmetric gauge theory Chern-Simons Theories M-Theory 

References

  1. [1]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    G. Papadopoulos, M2-branes, 3-Lie algebras and Plucker relations, JHEP 05 (2008) 054 [arXiv:0804.2662] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.P. Gauntlett and J.B. Gutowski, Constraining maximally supersymmetric membrane actions, JHEP 06 (2008) 053 [arXiv:0804.3078] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    M. Van Raamsdonk, Comments on the Bagger-Lambert theory and multiple M2-branes, JHEP 05 (2008) 105 [arXiv:0803.3803] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    N. Lambert and D. Tong, Membranes on an orbifold, Phys. Rev. Lett. 101 (2008) 041602 [arXiv:0804.1114] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    J. Distler, S. Mukhi, C. Papageorgakis and M. Van Raamsdonk, M2-branes on M-folds, JHEP 05 (2008) 038 [arXiv:0804.1256] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    N. Lambert and C. Papageorgakis, Relating U(N) × U(N) to SU(N) × SU(N) Chern-Simons membrane theories, JHEP 04 (2010) 104 [arXiv:1001.4779] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  12. [12]
    C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for superconformal field theories in 3, 5 and 6 dimensions, JHEP 02 (2008) 064 [arXiv:0801.1435] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    J. Bhattacharya and S. Minwalla, Superconformal indices for N = 6 Chern Simons theories, JHEP 01 (2009) 014 [arXiv:0806.3251] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    S. Kim, The complete superconformal index for N = 6 Chern-Simons theory, Nucl. Phys. B 821 (2009) 241 [Erratum ibid. B 864 (2012) 884] [arXiv:0903.4172] [INSPIRE].
  16. [16]
    Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field theories with general R-charge assignments, JHEP 04 (2011) 007 [arXiv:1101.0557] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    D. Bashkirov and A. Kapustin, Dualities between N = 8 superconformal field theories in three dimensions, JHEP 05 (2011) 074 [arXiv:1103.3548] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    B. Willett and I. Yaakov, N = 2 dualities and Z extremization in three dimensions, arXiv:1104.0487 [INSPIRE].
  19. [19]
    A. Kapustin, B. Willett and I. Yaakov, Tests of Seiberg-like duality in three dimensions, arXiv:1012.4021 [INSPIRE].
  20. [20]
    V. Borokhov, A. Kapustin and X.-k. Wu, Topological disorder operators in three-dimensional conformal field theory, JHEP 11 (2002) 049 [hep-th/0206054] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    V. Borokhov, A. Kapustin and X.-k. Wu, Monopole operators and mirror symmetry in three-dimensions, JHEP 12 (2002) 044 [hep-th/0207074] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    P. Goddard, J. Nuyts and D.I. Olive, Gauge theories and magnetic charge, Nucl. Phys. B 125 (1977) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons theories and AdS 4/CFT 3 correspondence, JHEP 09 (2008) 072 [arXiv:0806.1519] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    D. Gang, E. Koh, K. Lee and J. Park, ABCD of 3D \( \mathcal{N}=8 \) and 4 superconformal field theories, arXiv:1108.3647 [INSPIRE].
  25. [25]
    S. Cheon, D. Gang, C. Hwang, S. Nagaoka and J. Park, Duality between N = 5 and N = 6 Chern-Simons matter theory, JHEP 11 (2012) 009 [arXiv:1208.6085] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    H. Fuji, S. Hirano and S. Moriyama, Summing up all genus free energy of ABJM matrix model, JHEP 08 (2011) 001 [arXiv:1106.4631] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    N. Drukker, M. Mariño and P. Putrov, Nonperturbative aspects of ABJM theory, JHEP 11 (2011) 141 [arXiv:1103.4844] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. 1203 (2012) P03001 [arXiv:1110.4066] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    M. Hanada, M. Honda, Y. Honma, J. Nishimura, S. Shiba, et al., Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant, JHEP 05 (2012) 121 [arXiv:1202.5300] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Exact results on the ABJM Fermi gas, JHEP 10 (2012) 020 [arXiv:1207.4283] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P. Putrov and M. Yamazaki, Exact ABJM partition function from TBA, Mod. Phys. Lett. A 27 (2012) 1250200 [arXiv:1207.5066] [INSPIRE].ADSGoogle Scholar
  32. [32]
    O. Bergman and S. Hirano, Anomalous radius shift in AdS 4/CFT 3, JHEP 07 (2009) 016 [arXiv:0902.1743] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    M. Duff, J.T. Liu and R. Minasian, Eleven-dimensional origin of string-string duality: a one loop test, Nucl. Phys. B 452 (1995) 261 [hep-th/9506126] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    N. Lambert and C. Papageorgakis, Nonabelian (2, 0) tensor multiplets and 3-algebras, JHEP 08 (2010) 083 [arXiv:1007.2982] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    Y. Honma, M. Ogawa and S. Shiba, Dp-branes, NS5-branes and U-duality from nonabelian (2, 0) theory with Lie 3-algebra, JHEP 04 (2011) 117 [arXiv:1103.1327] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    S. Kawamoto, T. Takimi and D. Tomino, Branes from a non-abelian (2, 0) tensor multiplet with 3-algebra, J. Phys. A 44 (2011) 325402 [arXiv:1103.1223] [INSPIRE].MathSciNetGoogle Scholar
  37. [37]
    K. Okuyama, A note on the partition function of ABJM theory on S 3, Prog. Theor. Phys. 127 (2012) 229 [arXiv:1110.3555] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  38. [38]
    A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of Particle and Nuclear PhysicsGraduate University for Advanced Studies (SOKENDAI)TsukubaJapan
  2. 2.High Energy Accelerator Research Organization (KEK)TsukubaJapan
  3. 3.Harish-Chandra Research InstituteAllahabadIndia

Personalised recommendations