Journal of High Energy Physics

, 2013:151 | Cite as

Gauge invariant computable quantities in timelike Liouville theory



Timelike Liouville theory admits the sphere \({{\mathbb{S}}^2}\) as a real saddle point, about which quantum fluctuations can occur. An issue occurs when computing the expectation values of specific types of quantities, like the distance between points. The problem being that the gauge redundancy of the path integral over metrics is not completely fixed even after fixing to conformal gauge by imposing \({g_{{\mu \nu }}}={e^{{2\widehat{b}\phi }}}{{\widetilde{g}}_{{\mu \nu }}}\), where ϕ is the Liouville field and \({{\widetilde{g}}_{{\mu \nu }}}\) is a reference metric. The physical metric \({g_{{\mu \nu }}}\), and therefore the path integral over metrics still possesses a gauge redundancy due to invariance under SL 2(\(\mathbb{C}\)) coordinate transformations of the reference coordinates. This zero mode of the action must be dealt with before a perturbative analysis can be made.

This paper shows that after fixing to conformal gauge, the remaining zero mode of the linearized Liouville action due to SL 2(\(\mathbb{C}\)) coordinate transformations can be dealt with by using standard Fadeev-Popov methods. Employing the gauge condition that the “dipole” of the reference coordinate system is a fixed vector, and then integrating over all values of this dipole vector. The “dipole” vector referring to how coordinate area is concentrated about the sphere; assuming the sphere is embedded in \({{\mathbb{R}}^3}\) and centered at the origin, and the coordinate area is thought of as a charge density on the sphere. The vector points along the ray from the origin of \({{\mathbb{R}}^3}\) to the direction of greatest coordinate area.

A Green’s function is obtained and used to compute the expectation value of the geodesic length between two points on the \({{\mathbb{S}}^2}\) to second order in the Timelike Liouville coupling \(\widehat{b}\). This quantity doesn’t suffer from any power law or logarithmic divergences as a na¨ıve power counting argument might suggest.


Gauge Symmetry Conformal and W Symmetry Conformal Field Models in String Theory dS vacua in string theory 


  1. [1]
    A.M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981) 207 [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    B. Freivogel, Y. Sekino, L. Susskind and C.-P. Yeh, A holographic framework for eternal inflation, Phys. Rev. D 74 (2006) 086003 [hep-th/0606204] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    L. Susskind, The census takers hat, arXiv:0710.1129 [INSPIRE].
  4. [4]
    Y. Sekino and L. Susskind, Census taking in the hat: FRW/CFT duality, Phys. Rev. D 80 (2009) 083531 [arXiv:0908.3844] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    D. Harlow and L. Susskind, Crunches, hats and a conjecture, arXiv:1012.5302 [INSPIRE].
  6. [6]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    H. Dorn and H. Otto, Two and three point functions in Liouville theory, Nucl. Phys. B 429 (1994) 375 [hep-th/9403141] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    J. Ambjørn and Y. Watabiki, Scaling in quantum gravity, Nucl. Phys. B 445 (1995) 129 [hep-th/9501049] [INSPIRE].ADSGoogle Scholar
  9. [9]
    J. Ambjørn, J. Barkley and T. Budd, Roaming moduli space using dynamical triangulations, Nucl. Phys. B 858 (2012) 267 [arXiv:1110.4649] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Ambjørn and T.G. Budd, Semi-classical dynamical triangulations, Phys. Lett. B 718 (2012) 200 [arXiv:1209.6031] [INSPIRE].ADSGoogle Scholar
  11. [11]
    E. D’Hoker, D.Z. Freedman and R. Jackiw, SO(2, 1) invariant quantization of the Liouville theory, Phys. Rev. D 28 (1983) 2583 [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    E. D’Hoker and R. Jackiw, Space translation breaking and compactification in the Liouville theory, Phys. Rev. Lett. 50 (1983) 1719 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    D. Harlow, J. Maltz and E. Witten, Analytic continuation of Liouville theory, JHEP 12 (2011) 071 [arXiv:1108.4417] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    A.B. Zamolodchikov, Three-point function in the minimal Liouville gravity, Theor. Math. Phys. 142 (2005) 183 [INSPIRE].MathSciNetMATHGoogle Scholar
  15. [15]
    P.H. Ginsparg and G.W. Moore, Lectures on 2D gravity and 2D string theory, hep-th/9304011 [INSPIRE].
  16. [16]
    Y. Nakayama, Liouville field theory: a decade after the revolution, Int. J. Mod. Phys. A 19 (2004) 2771 [hep-th/0402009] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    J. Teschner, Liouville theory revisited, Class. Quant. Grav. 18 (2001) R153 [hep-th/0104158] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  18. [18]
    E. D’Hoker and R. Jackiw, Classical and quantal Liouville field theory, Phys. Rev. D 26 (1982) 3517 [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    N. Seiberg, Notes on quantum Liouville theory and quantum gravity, Prog. Theor. Phys. Suppl. 102 (1990) 319 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    F. David, Conformal field theories coupled to 2D gravity in the conformal gauge, Mod. Phys. Lett. A 3 (1988) 1651 [INSPIRE].ADSGoogle Scholar
  22. [22]
    A.B. Zamolodchikov, On the three-point function in minimal Liouville gravity, hep-th/0505063 [INSPIRE].
  23. [23]
    E. Witten, Analytic continuation of Chern-Simons theory, arXiv:1001.2933 [INSPIRE].
  24. [24]
    C.M. Bender and S.A. Orszag, Advanced mathematical methods for scientists and engineers, Springer, U.S.A. (1978).MATHGoogle Scholar
  25. [25]
    L. Faddeev and V. Popov, Feynman diagrams for the yang-mills field, Phys. Lett. B 25 (1967) 29 [INSPIRE].ADSGoogle Scholar
  26. [26]
    L. Faddeev, Feynman integral for singular Lagrangians, Theor. Math. Phys. 1 (1969) 1 [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    G.C. Wick, The evaluation of the collision matrix, Phys. Rev. 80 (1950) 268 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  28. [28]
    V.N. Gribov, Quantization of non-Abelian gauge theories, Nucl. Phys. B 139 (1978) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Stanford Institute for Theoretical Physics and Department of PhysicsStanford UniversityStanfordU.S.A.

Personalised recommendations