Journal of High Energy Physics

, 2013:117 | Cite as

Chiral primary one-point functions in the D3-D7 defect conformal field theory

  • Charlotte Kristjansen
  • Gordon W. Semenoff
  • Donovan Young


We compute the one-point functions of chiral primary operators in the non-supersymmetric defect conformal field theory that is dual to the IIB string theory on AdS5 × S 5 background with a probe D7 brane with internal gauge field flux, both in perturbative Yang-Mills theory and in the string theory dual. The former is expected to be accurate at weak coupling whereas the latter should be accurate in the planar strong coupling limit of the gauge theory. We consider the distinct cases where the D7 brane has geometry AdS4 × S 4 with an instanton bundle of the worldvolume gauge fields on S 4 and AdS4 × S 2 × S 2 with Dirac monopole bundles on each S 2. The gauge theory computation and the string theory computation can be compared directly in the planar limit and then a subsequent limit where the worldvolume flux is large. We find that there is exact agreement between the two in the leading order.


Brane Dynamics in Gauge Theories D-branes AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 


  1. [1]
    A. Karch and L. Randall, Localized gravity in string theory, Phys. Rev. Lett. 87 (2001) 061601 [hep-th/0105108] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    A. Karch and L. Randall, Open and closed string interpretation of SUSY CFTs on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories, Phys. Rev. D 66 (2002) 025009 [hep-th/0111135] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    J. Erdmenger, Z. Guralnik and I. Kirsch, Four-dimensional superconformal theories with interacting boundaries or defects, Phys. Rev. D 66 (2002) 025020 [hep-th/0203020] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    A. Karch and L. Randall, Locally localized gravity, JHEP 05 (2001) 008 [hep-th/0011156] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    J. Gomis and C. Romelsberger, Bubbling defect CFTs, JHEP 08 (2006) 050 [hep-th/0604155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS type IIB interface solutions. II. Flux solutions and multi-Janus, JHEP 06 (2007) 022 [arXiv:0705.0024] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  9. [9]
    J.L. Davis, P. Kraus and A. Shah, Gravity dual of a quantum Hall plateau transition, JHEP 11 (2008) 020 [arXiv:0809.1876] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    S.-J. Rey, String theory on thin semiconductors: holographic realization of Fermi points and surfaces, Prog. Theor. Phys. Suppl. 177 (2009) 128 [arXiv:0911.5295] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  11. [11]
    R.C. Myers and M.C. Wapler, Transport properties of holographic defects, JHEP 12 (2008) 115 [arXiv:0811.0480] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Quantum Hall effect in a holographic model, JHEP 10 (2010) 063 [arXiv:1003.4965] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    N. Jokela, G. Lifschytz and M. Lippert, Magneto-roton excitation in a holographic quantum Hall fluid, JHEP 02 (2011) 104 [arXiv:1012.1230] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    N. Jokela, M. Jarvinen and M. Lippert, A holographic quantum Hall model at integer filling, JHEP 05 (2011) 101 [arXiv:1101.3329] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Striped instability of a holographic Fermi-like liquid, JHEP 10 (2011) 034 [arXiv:1106.3883] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D. Kutasov, J. Lin and A. Parnachev, Conformal phase transitions at weak and strong coupling, Nucl. Phys. B 858 (2012) 155 [arXiv:1107.2324] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    N. Jokela, M. Jarvinen and M. Lippert, Fluctuations of a holographic quantum Hall fluid, JHEP 01 (2012) 072 [arXiv:1107.3836] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J.L. Davis, H. Omid and G.W. Semenoff, Holographic fermionic fixed points in D = 3, JHEP 09 (2011) 124 [arXiv:1107.4397] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    J.L. Davis and N. Kim, Flavor-symmetry breaking with charged probes, JHEP 06 (2012) 064 [arXiv:1109.4952] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    G. Grignani, N. Kim and G.W. Semenoff, D3-D5 holography with flux, Phys. Lett. B 715 (2012) 225 [arXiv:1203.6162] [INSPIRE].ADSGoogle Scholar
  21. [21]
    N. Jokela, G. Lifschytz and M. Lippert, Magnetic effects in a holographic Fermi-like liquid, JHEP 05 (2012) 105 [arXiv:1204.3914] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Goykhman, A. Parnachev and J. Zaanen, Fluctuations in finite density holographic quantum liquids, JHEP 10 (2012) 045 [arXiv:1204.6232] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G. Grignani, N. Kim and G.W. Semenoff, D7-anti-D7 bilayer: holographic dynamical symmetry breaking, arXiv:1208.0867 [INSPIRE].
  24. [24]
    J. Polchinski, String theory. Vol. 2: superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  25. [25]
    K. Nagasaki and S. Yamaguchi, Expectation values of chiral primary operators in holographic interface CFT, Phys. Rev. D 86 (2012) 086004 [arXiv:1205.1674] [INSPIRE].ADSGoogle Scholar
  26. [26]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    D.E. Berenstein, E. Gava, J.M. Maldacena, K.S. Narain and H.S. Nastase, Open strings on plane waves and their Yang-Mills duals, hep-th/0203249 [INSPIRE].
  28. [28]
    P. Lee and J.-w. Park, Open strings in pp wave background from defect conformal field theory, Phys. Rev. D 67 (2003) 026002 [hep-th/0203257] [INSPIRE].ADSGoogle Scholar
  29. [29]
    V. Balasubramanian, M.-x. Huang, T.S. Levi and A. Naqvi, Open strings from N = 4 super Yang-Mills, JHEP 08 (2002) 037 [hep-th/0204196] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    O. DeWolfe and N. Mann, Integrable open spin chains in defect conformal field theory, JHEP 04 (2004) 035 [hep-th/0401041] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three point functions of chiral operators in D = 4 N = 4 SYM at large-N, Adv. Theor. Math. Phys. 2 (1998) 697 [hep-th/9806074] [INSPIRE].MathSciNetMATHGoogle Scholar
  32. [32]
    J. Castelino, S. Lee and W. Taylor, Longitudinal five-branes as four spheres in matrix theory, Nucl. Phys. B 526 (1998) 334 [hep-th/9712105] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    N.R. Constable, R.C. Myers and O. Tafjord, Nonabelian brane intersections, JHEP 06 (2001) 023 [hep-th/0102080] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    C.G. Callan Jr., H.K. Lee, T. McLoughlin, J.H. Schwarz, I. Swanson, et al., Quantizing string theory in AdS 5 × S 5: beyond the pp wave, Nucl. Phys. B 673 (2003) 3 [hep-th/0307032] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    D. Bak, M. Gutperle and S. Hirano, A dilatonic deformation of AdS 5 and its field theory dual, JHEP 05 (2003) 072 [hep-th/0304129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    E. D’Hoker, J. Estes and M. Gutperle, Ten-dimensional supersymmetric Janus solutions, Nucl. Phys. B 757 (2006) 79 [hep-th/0603012] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    E. D’Hoker, J. Estes and M. Gutperle, Interface Yang-Mills, supersymmetry and Janus, Nucl. Phys. B 753 (2006) 16 [hep-th/0603013] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    C. Bachas and J. Estes, Spin-2 spectrum of defect theories, JHEP 06 (2011) 005 [arXiv:1103.2800] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    B. Assel, C. Bachas, J. Estes and J. Gomis, Holographic duals of D = 3 N = 4 superconformal field theories, JHEP 08 (2011) 087 [arXiv:1106.4253] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Charlotte Kristjansen
    • 1
  • Gordon W. Semenoff
    • 1
    • 2
  • Donovan Young
    • 3
  1. 1.Niels Bohr InstituteCopenhagen UniversityCopenhagen ØDenmark
  2. 2.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada
  3. 3.Nordita, KTH Royal Institute of Technology and Stockholm UniversityStockholmSweden

Personalised recommendations