Advertisement

Journal of High Energy Physics

, 2013:114 | Cite as

Non-perturbative superpotentials in F-theory and string duality

  • P. Berglund
  • P. Mayr
Article

Abstract

We use open-closed string duality between F-theory on K3 × K3 and type II strings on CY manifolds without branes to study non-perturbative superpotentials in generalized flux compactifications. On the F-theory side we obtain the full flux potential including D3-instanton contributions and show that it leads to an explicit and simple realization of the three ingredients of the KKLT model for stringy dS vacua. The D3- instanton contribution is highly non-trivial, can be systematically computed including the determinant factors and demonstrates that a particular flux lifts very effectively zero modes on the instanton. On the closed string side, we describe a generalization of the Gukov- Vafa-Witten superpotential for type II strings on generalized CY manifolds, depending on all moduli multiplets.

Keywords

Flux compactifications F-Theory dS vacua in string theory String Duality 

References

  1. [1]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    T. Banks, Landskepticism or why effective potentials dont count string models, hep-th/0412129 [INSPIRE].
  3. [3]
    E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys. B 474 (1996) 343 [hep-th/9604030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    F. Denef, M.R. Douglas and B. Florea, Building a better racetrack, JHEP 06 (2004) 034 [hep-th/0404257] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    D. Robbins and S. Sethi, A Barren landscape?, Phys. Rev. D 71 (2005) 046008 [hep-th/0405011] [INSPIRE].ADSGoogle Scholar
  6. [6]
    F. Denef, M.R. Douglas, B. Florea, A. Grassi and S. Kachru, Fixing all moduli in a simple F-theory compactification, Adv. Theor. Math. Phys. 9 (2005) 861 [hep-th/0503124] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    L. Görlich, S. Kachru, P.K. Tripathy and S.P. Trivedi, Gaugino condensation and nonperturbative superpotentials in flux compactifications, JHEP 12 (2004) 074 [hep-th/0407130] [INSPIRE].Google Scholar
  8. [8]
    R. D’Auria, S. Ferrara, M. Trigiante and S. Vaula, Scalar potential for the gauged Heisenberg algebra and a non-polynomial antisymmetric tensor theory, Phys. Lett. B 610 (2005) 270 [hep-th/0412063] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    R. D’Auria, S. Ferrara, M. Trigiante and S. Vaula, Gauging the Heisenberg algebra of special quaternionic manifolds, Phys. Lett. B 610 (2005) 147 [hep-th/0410290] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    S. Gukov, C. Vafa and E. Witten, CFTs from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477] [hep-th/9906070] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    A. Neitzke and C. Vafa, N = 2 strings and the twistorial Calabi-Yau, hep-th/0402128 [INSPIRE].
  12. [12]
    N. Nekrasov, H. Ooguri and C. Vafa, S duality and topological strings, JHEP 10 (2004) 009 [hep-th/0403167] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    A. Sen, F theory and orientifolds, Nucl. Phys. B 475 (1996) 562 [hep-th/9605150] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    P.K. Tripathy and S.P. Trivedi, D3 brane action and fermion zero modes in presence of background flux, JHEP 06 (2005) 066 [hep-th/0503072] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    N. Saulina, Topological constraints on stabilized flux vacua, Nucl. Phys. B 720 (2005) 203 [hep-th/0503125] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    R. Kallosh, A.-K. Kashani-Poor and A. Tomasiello, Counting fermionic zero modes on M5 with fluxes, JHEP 06 (2005) 069 [hep-th/0503138] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2., Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    E. Witten, Five-brane effective action in M-theory, J. Geom. Phys. 22 (1997) 103 [hep-th/9610234] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  21. [21]
    O.J. Ganor, A Note on zeros of superpotentials in F-theory, Nucl. Phys. B 499 (1997) 55 [hep-th/9612077] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    T.R. Taylor and C. Vafa, R R flux on Calabi-Yau and partial supersymmetry breaking, Phys. Lett. B 474 (2000) 130 [hep-th/9912152] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    P. Mayr, On supersymmetry breaking in string theory and its realization in brane worlds, Nucl. Phys. B 593 (2001) 99 [hep-th/0003198] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    C. Vafa, Superstrings and topological strings at large-N, J. Math. Phys. 42 (2001) 2798 [hep-th/0008142] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  25. [25]
    F. Cachazo, K.A. Intriligator and C. Vafa, A Large-N duality via a geometric transition, Nucl. Phys. B 603 (2001) 3 [hep-th/0103067] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    M. Duff, R. Minasian and E. Witten, Evidence for heterotic/heterotic duality, Nucl. Phys. B 465 (1996) 413 [hep-th/9601036] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    M.R. Douglas and M. Li, D-brane realization of N = 2 super Yang-Mills theory in four-dimensions, hep-th/9604041 [INSPIRE].
  28. [28]
    A.E. Lawrence and N. Nekrasov, Instanton sums and five-dimensional gauge theories, Nucl. Phys. B 513 (1998) 239 [hep-th/9706025] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    P. Mayr, Mirror symmetry, N = 1 superpotentials and tensionless strings on Calabi-Yau four folds, Nucl. Phys. B 494 (1997) 489 [hep-th/9610162] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  31. [31]
    S. Ferrara, J.A. Harvey, A. Strominger and C. Vafa, Second quantized mirror symmetry, Phys. Lett. B 361 (1995) 59 [hep-th/9505162] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    S. Kachru and C. Vafa, Exact results for N = 2 compactifications of heterotic strings, Nucl. Phys. B 450 (1995) 69 [hep-th/9505105] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    L. Andrianopoli, R. D’Auria, S. Ferrara and M.A. Lledó, 4–D gauged supergravity analysis of type IIB vacua on K3 × T 2 /2, JHEP 03 (2003) 044 [hep-th/0302174] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    C. Angelantonj, R. D’Auria, S. Ferrara and M. Trigiante, K3 × T 2 /Z(2) orientifolds with fluxes, open string moduli and critical points, Phys. Lett. B 583 (2004) 331 [hep-th/0312019] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    D. Lüst, P. Mayr, S. Reffert and S. Stieberger, F-theory flux, destabilization of orientifolds and soft terms on D7-branes, Nucl. Phys. B 732 (2006) 243 [hep-th/0501139] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Graña, T.W. Grimm, H. Jockers and J. Louis, Soft supersymmetry breaking in Calabi-Yau orientifolds with D-branes and fluxes, Nucl. Phys. B 690 (2004) 21 [hep-th/0312232] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    H. Jockers and J. Louis, The Effective action of D7-branes in N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 705 (2005) 167 [hep-th/0409098] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    P.G. Camara, L. Ibáñez and A. Uranga, Flux induced SUSY breaking soft terms, Nucl. Phys. B 689 (2004) 195 [hep-th/0311241] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    P.G. Camara, L. Ibáñez and A. Uranga, Flux-induced SUSY-breaking soft terms on D7-D3 brane systems, Nucl. Phys. B 708 (2005) 268 [hep-th/0408036] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Font and L. Ibáñez, SUSY-breaking soft terms in a MSSM magnetized D7-brane model, JHEP 03 (2005) 040 [hep-th/0412150] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    D. Lüst, S. Reffert and S. Stieberger, Flux-induced soft supersymmetry breaking in chiral type IIB orientifolds with D3/D7-branes, Nucl. Phys. B 706 (2005) 3 [hep-th/0406092] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    D. Lüst, S. Reffert and S. Stieberger, MSSM with soft SUSY breaking terms from D7-branes with fluxes, Nucl. Phys. B 727 (2005) 264 [hep-th/0410074] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    D. Lüst, Intersecting brane worlds: A Path to the standard model?, Class. Quant. Grav. 21 (2004) S1399 [hep-th/0401156] [INSPIRE].CrossRefGoogle Scholar
  45. [45]
    H. Jockers and J. Louis, D-terms and F-terms from D7-brane fluxes, Nucl. Phys. B 718 (2005) 203 [hep-th/0502059] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    I. Antoniadis and T. Maillard, Moduli stabilization from magnetic fluxes in type-I string theory, Nucl. Phys. B 716 (2005) 3 [hep-th/0412008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    A. Saltman and E. Silverstein, The Scaling of the no scale potential and de Sitter model building, JHEP 11 (2004) 066 [hep-th/0402135] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    C. Burgess, R. Kallosh and F. Quevedo, De Sitter string vacua from supersymmetric D terms, JHEP 10 (2003) 056 [hep-th/0309187] [INSPIRE].MathSciNetADSGoogle Scholar
  50. [50]
    V. Balasubramanian and P. Berglund, Stringy corrections to Kähler potentials, SUSY breaking and the cosmological constant problem, JHEP 11 (2004) 085 [hep-th/0408054] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    S. Sethi, C. Vafa and E. Witten, Constraints on low dimensional string compactifications, Nucl. Phys. B 480 (1996) 213 [hep-th/9606122] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    M.R. Douglas, Branes within branes, hep-th/9512077 [INSPIRE].
  54. [54]
    M. Bershadsky and V. Sadov, F theory on K3 × K3 and instantons on 7-branes, Nucl. Phys. B 510 (1998) 232 [hep-th/9703194] [INSPIRE].MathSciNetADSGoogle Scholar
  55. [55]
    J. Polchinski and A. Strominger, New vacua for type-II string theory, Phys. Lett. B 388 (1996) 736 [hep-th/9510227] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    P.K. Tripathy and S.P. Trivedi, Compactification with flux on K3 and tori, JHEP 03 (2003) 028 [hep-th/0301139] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    P. Candelas, X. De La Ossa, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for two parameter models. 1., Nucl. Phys. B 416 (1994) 481 [hep-th/9308083] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces, Commun. Math. Phys. 167 (1995) 301 [hep-th/9308122] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  59. [59]
    P. Mayr, Phases of supersymmetric D-branes on Kähler manifolds and the McKay correspondence, JHEP 01 (2001) 018 [hep-th/0010223] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    A. Klemm, W. Lerche and P. Mayr, K3 Fibrations and heterotic type-II string duality, Phys. Lett. B 357 (1995) 313 [hep-th/9506112] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    P.S. Aspinwall and J. Louis, On the ubiquity of K3 fibrations in string duality, Phys. Lett. B 369 (1996) 233 [hep-th/9510234] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    A. Ceresole, R. D’Auria, S. Ferrara and A. Van Proeyen, Duality transformations in supersymmetric Yang-Mills theories coupled to supergravity, Nucl. Phys. B 444 (1995) 92 [hep-th/9502072] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    A. Sen, A Note on enhanced gauge symmetries in M and string theory, JHEP 09 (1997) 001 [hep-th/9707123] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    P.S. Aspinwall, K3 surfaces and string duality, hep-th/9611137 [INSPIRE].
  65. [65]
    P. Berglund, S.H. Katz, A. Klemm and P. Mayr, New Higgs transitions between dual N = 2 string models, Nucl. Phys. B 483 (1997) 209 [hep-th/9605154] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    S. Ferrara, R. Minasian and A. Sagnotti, Low-energy analysis of M and F theories on Calabi-Yau threefolds, Nucl. Phys. B 474 (1996) 323 [hep-th/9604097] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    J. Louis, J. Sonnenschein, S. Theisen and S. Yankielowicz, Nonperturbative properties of heterotic string vacua compactified on K3 × T 2, Nucl. Phys. B 480 (1996) 185 [hep-th/9606049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    J.A. Harvey and A. Strominger, The heterotic string is a soliton, Nucl. Phys. B 449 (1995) 535 [Erratum ibid. B 458 (1996) 456] [hep-th/9504047] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    T. Banks, M.R. Douglas and N. Seiberg, Probing F-theory with branes, Phys. Lett. B 387 (1996) 278 [hep-th/9605199] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B 471 (1996) 195 [hep-th/9603150] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    A. Klemm and P. Mayr, Strong coupling singularities and nonAbelian gauge symmetries in N = 2 string theory, Nucl. Phys. B 469 (1996) 37[hep-th/9601014] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  72. [72]
    S.H. Katz, D.R. Morrison and M.R. Plesser, Enhanced gauge symmetry in type-II string theory, Nucl. Phys. B 477 (1996) 105 [hep-th/9601108] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  73. [73]
    S. Hosono, A. Klemm and S. Theisen, Lectures on mirror symmetry, hep-th/9403096 [INSPIRE].
  74. [74]
    C. Vafa and E. Witten, A Strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  75. [75]
    J. Minahan, D. Nemeschansky, C. Vafa and N. Warner, E strings and N = 4 topological Yang-Mills theories, Nucl. Phys. B 527 (1998) 581 [hep-th/9802168] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  76. [76]
    A. Grassi, Divisors on elliptic Calabi-Yau four folds and the superpotential in F-theory. 1., J. Geom. Phys. 28 (1998) 289 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  77. [77]
    E. Witten, Some comments on string dynamics, hep-th/9507121 [INSPIRE].
  78. [78]
    N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  79. [79]
    A. Klemm, P. Mayr and C. Vafa, BPS states of exceptional noncritical strings, hep-th/9607139 [INSPIRE].
  80. [80]
    J.A. Harvey and G.W. Moore, Algebras, BPS states and strings, Nucl. Phys. B 463 (1996) 315 [hep-th/9510182] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  81. [81]
    R. D’Auria, S. Ferrara and M. Trigiante, Homogeneous special manifolds, orientifolds and solvable coordinates, Nucl. Phys. B 693 (2004) 261 [hep-th/0403204] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  82. [82]
    D. Cremades, L. Ibáñez and F. Marchesano, SUSY quivers, intersecting branes and the modest hierarchy problem, JHEP 07 (2002) 009 [hep-th/0201205] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    D. Lüst, P. Mayr, R. Richter and S. Stieberger, Scattering of gauge, matter and moduli fields from intersecting branes, Nucl. Phys. B 696 (2004) 205 [hep-th/0404134] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    M. Graña, J. Louis and D. Waldram, Hitchin functionals in N = 2 supergravity, JHEP 01 (2006) 008 [hep-th/0505264] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  86. [86]
    S. Gurrieri, J. Louis, A. Micu and D. Waldram, Mirror symmetry in generalized Calabi-Yau compactifications, Nucl. Phys. B 654 (2003) 61 [hep-th/0211102] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  87. [87]
    S. Gurrieri and A. Micu, Type IIB theory on half flat manifolds, Class. Quant. Grav. 20 (2003) 2181 [hep-th/0212278] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  88. [88]
    S. Fidanza, R. Minasian and A. Tomasiello, Mirror symmetric SU(3) structure manifolds with NS fluxes, Commun. Math. Phys. 254 (2005) 401 [hep-th/0311122] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  89. [89]
    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Supersymmetric backgrounds from generalized Calabi-Yau manifolds, JHEP 08 (2004) 046 [hep-th/0406137] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    J. Louis and A. Micu, Type 2 theories compactified on Calabi-Yau threefolds in the presence of background fluxes, Nucl. Phys. B 635 (2002) 395 [hep-th/0202168] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  91. [91]
    S. Kachru and A.-K. Kashani-Poor, Moduli potentials in type IIA compactifications with RR and NS flux, JHEP 03 (2005) 066 [hep-th/0411279] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  92. [92]
    S. Cecotti, S. Ferrara and L. Girardello, Geometry of Type II Superstrings and the Moduli of Superconformal Field Theories, Int. J. Mod. Phys. A 4 (1989) 2475 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  93. [93]
    S. Ferrara and S. Sabharwal, Quaternionic Manifolds for Type II Superstring Vacua of Calabi-Yau Spaces, Nucl. Phys. B 332 (1990) 317 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  94. [94]
    J. Michelson, Compactifications of type IIB strings to four-dimensions with nontrivial classical potential, Nucl. Phys. B 495 (1997) 127 [hep-th/9610151] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  95. [95]
    G. Dall’Agata, Type IIB supergravity compactified on a Calabi-Yau manifold with H fluxes, JHEP 11 (2001) 005 [hep-th/0107264] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  96. [96]
    D.R. Morrison, Mirror symmetry and the type-II string, Nucl. Phys. Proc. Suppl. 46 (1996) 146 [hep-th/9512016] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  97. [97]
    S. Ashok and M.R. Douglas, Counting flux vacua, JHEP 01 (2004) 060 [hep-th/0307049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  98. [98]
    R. Friedman, J. Morgan and E. Witten, Vector bundles and F-theory, Commun. Math. Phys. 187 (1997) 679 [hep-th/9701162] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  99. [99]
    P.S. Aspinwall and D.R. Morrison, Point - like instantons on K3 orbifolds, Nucl. Phys. B 503 (1997) 533 [hep-th/9705104] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  100. [100]
    P. Berglund and P. Mayr, Heterotic string/F theory duality from mirror symmetry, Adv. Theor. Math. Phys. 2 (1999) 1307 [hep-th/9811217] [INSPIRE].MathSciNetGoogle Scholar
  101. [101]
    P.S. Aspinwall, Aspects of the hypermultiplet moduli space in string duality, JHEP 04 (1998) 019 [hep-th/9802194] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  102. [102]
    P. Mayr, Conformal field theories on K3 and three-dimensional gauge theories, JHEP 08 (2000) 042 [hep-th/9910268] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  103. [103]
    I.V. Dolgachev, Mirror symmetry for lattice polarized K3 surfaces, alg-geom/9502005 [INSPIRE].
  104. [104]
    E. Perevalov, On the hypermultiplet moduli space of heterotic compactifications with small instantons, hep-th/9812253 [INSPIRE].
  105. [105]
    K. Choi, A. Falkowski, H.P. Nilles, M. Olechowski and S. Pokorski, Stability of flux compactifications and the pattern of supersymmetry breaking, JHEP 11 (2004) 076 [hep-th/0411066] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  106. [106]
    S. Kachru, A. Klemm, W. Lerche, P. Mayr and C. Vafa, Nonperturbative results on the point particle limit of N = 2 heterotic string compactifications, Nucl. Phys. B 459 (1996) 537 [hep-th/9508155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  107. [107]
    S. Cecotti, L. Girardello and M. Porrati, Constraints on partial superhiggs, Nucl. Phys. B 268 (1986) 295 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  108. [108]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  109. [109]
    P.S. Aspinwall, B.R. Greene and D.R. Morrison, Calabi-Yau moduli space, mirror manifolds and space-time topology change in string theory, Nucl. Phys. B 416 (1994) 414 [hep-th/9309097] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  110. [110]

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of New HampshireDurhamU.S.A.
  2. 2.Arnold-Sommerfeld-Center for Theoretical PhysicsMunichGermany

Personalised recommendations