Journal of High Energy Physics

, 2013:105 | Cite as

Negative refractive index in hydrodynamical systems

  • Antonio Amariti
  • Davide Forcella
  • Alberto Mariotti


We discuss the presence of exotic electromagnetic phenomena in systems with finite charge density which are described by hydrodynamics. We show that such systems generically have negative refractive index for low frequencies electromagnetic waves, i.e. the energy flux and the phase velocity of the wave propagate in opposite directions. We comment on possible phenomenological applications, focusing on the Quark Gluon Plasma.


Phenomenological Models Holography and quark-gluon plasmas Holography and condensed matter physics (AdS/CMT) 


  1. [1]
    D.R. Smith et al., Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84 (2000) 4184.ADSCrossRefGoogle Scholar
  2. [2]
    J.B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85 (2000) 3966.ADSCrossRefGoogle Scholar
  3. [3]
    A. Amariti, D. Forcella, A. Mariotti and G. Policastro, Holographic optics and negative refractive index, JHEP 04 (2011) 036 [arXiv:1006.5714] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    X. Gao and H.-b. Zhang, Refractive index in holographic superconductors, JHEP 08 (2010) 075 [arXiv:1008.0720] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    X.-H. Ge, K. Jo and S.-J. Sin, Hydrodynamics of RN AdS 4 black hole and holographic optics, JHEP 03 (2011) 104 [arXiv:1012.2515] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    F. Bigazzi, A.L. Cotrone, J. Mas, D. Mayerson and J. Tarrio, D3-D7 quark-gluon plasmas at finite baryon density, JHEP 04 (2011) 060 [arXiv:1101.3560] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    F. Bigazzi, A.L. Cotrone, D. Mayerson, A. Paredes and J. Tarrio, Holographic flavored quark-gluon plasmas, PoS(FACESQCD)005 [arXiv:1101.3841] [INSPIRE].
  8. [8]
    V.M. Agranovich and Y.N. Gartstein, Spatial dispersion and negative refraction of light, Phys. Usp. 49 (2006) 1029.ADSCrossRefGoogle Scholar
  9. [9]
    V.M. Agranovich, Y.R. Shen, R.H. Baughman and A.A. Zakhidov, Optical bulk and surface waves with negative refraction, Phys. Rev. B 69 (2004) 165112.ADSGoogle Scholar
  10. [10]
    V.M. Agranovich and Y.N. Gartstein, Electrodynamics of metamaterials and the Landau Lifshitz approach to the magnetic permeability, Metamaterials 3 (2009) 19.CrossRefGoogle Scholar
  11. [11]
    V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ϵ and μ, Sov. Phys. Usp. 10 (1968) 509.ADSCrossRefGoogle Scholar
  12. [12]
    Some negative refractive index material headlines long before Veselago work and going back as far as to 1905 webpage,
  13. [13]
    D.R. Smith, W.J. Padilla, J. Willie, D.C. Nemat-Nasser and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84 (2000) 4184.ADSCrossRefGoogle Scholar
  14. [14]
    J.B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85 (2000) 3966.ADSCrossRefGoogle Scholar
  15. [15]
    R.A. Shelby, D.R. Smith and S. Schultz, Experimental verification of a negative index of refraction, Science 292 (2001) 77.ADSCrossRefGoogle Scholar
  16. [16]
    R.A. Depine and A. Lakhtakia, A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity, Microwave Optical Technology Lett. 41 (2004) 315.CrossRefGoogle Scholar
  17. [17]
    L.D. Landau and E.M. Lifshitz, Electrodynamics of continuous media, Pergamon Press, Oxford U.K. (1984).Google Scholar
  18. [18]
    M. Dressel and G. Gruner, Electrodynamics of solids, Cambridge University Press, Cambridge U.K. (2002).CrossRefGoogle Scholar
  19. [19]
    D. Forster, Hydrodynamic fluctuations, broken symmetries and correlation functions, Benjamin-Cummings, Reading U.S.A. (1975).Google Scholar
  20. [20]
    L.P. Kadanoff and P.C. Martin, Hydrodynamics equations and correlation functions, Annals Phys. 24 (1963) 419.MathSciNetADSMATHCrossRefGoogle Scholar
  21. [21]
    S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].ADSGoogle Scholar
  22. [22]
    C.P. Herzog, N. Lisker, P. Surowka and A. Yarom, Transport in holographic superfluids, JHEP 08 (2011) 052 [arXiv:1101.3330] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S.I. Pekar, The theory of electromagnetic waves in a crystal in which excitons are produced, Zh. Eksp. Teor. Fiz. 33 (1957) 1022 [Sov. Phys. JETP 6 (1958) 785].Google Scholar
  24. [24]
    A. Amariti, D. Forcella and A. Mariotti, Additional light waves in hydrodynamics and holography, arXiv:1010.1297 [INSPIRE].
  25. [25]
    A. Amariti, D. Forcella, A. Mariotti and M. Siani, Negative refraction and superconductivity, JHEP 10 (2011) 104 [arXiv:1107.1242] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka, Density dependence of transport coefficients from holographic hydrodynamics, Prog. Theor. Phys. 120 (2008) 833 [arXiv:0806.4460] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  28. [28]
    A. Andronic, P. Braun-Munzinger and J. Stachel, Hadron production in central nucleus-nucleus collisions at chemical freeze-out, Nucl. Phys. A 772 (2006) 167 [nucl-th/0511071] [INSPIRE].ADSGoogle Scholar
  29. [29]
    P. Braun-Munzinger, K. Redlich and J. Stachel, Particle production in heavy ion collisions, in Quark gluon plasma, R.C. Hwa et al. eds., World Scientific, Singapore (2004), pg. 491 [nucl-th/0304013] [INSPIRE].
  30. [30]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].
  31. [31]
    N. Liu, H. Liu, S. Zhu and H. Giessen, Stereometamaterials, Nature Photon. 3 (2009) 157.ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Antonio Amariti
    • 1
  • Davide Forcella
    • 2
  • Alberto Mariotti
    • 3
  1. 1.Department of PhysicsUniversity of CaliforniaSan Diego, La JollaU.S.A
  2. 2.Physique Théorique et Mathématique and International Solvay InstitutesUniversité Libre de BruxellesBruxellesBelgium
  3. 3.Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay InstitutesBrusselsBelgium

Personalised recommendations