Fluxbranes: moduli stabilisation and inflation

  • Arthur Hebecker
  • Sebastian C. Kraus
  • Moritz Küntzler
  • Dieter Lüst
  • Timo Weigand


Fluxbrane inflation is a stringy version of D-term inflation in which two fluxed D7-branes move towards each other until their (relative) gauge flux annihilates. Compared to brane-antibrane inflation, the leading-order inflationary potential of this scenario is much flatter. In the present paper we first discuss a new explicit moduli stabilisation procedure combining the F - and D-term scalar potentials: it is based on fluxed D7-branes in a geometry with three large four-cycles of hierarchically different volumes. Subsequently, we combine this moduli stabilisation with the fluxbrane inflation idea, demonstrating in particular that CMB data (including cosmic string constraints) can be explained within our setup of hierarchical large volume CY compactifications. We also indicate how the η-problem is expected to re-emerge through higher-order corrections and how it might be overcome by further refinements of our model. Finally, we explain why recently raised concerns about constant FI terms do not affect the consistent, string-derived variant of D-term inflation discussed in this paper.


Strings and branes phenomenology 


  1. [1]
    G. Dvali and S.H. Henry Tye, Brane inflation, Phys. Lett. B 450 (1999) 72 [hep-ph/9812483] [INSPIRE].ADSGoogle Scholar
  2. [2]
    C. Burgess et al., The inflationary brane anti-brane universe, JHEP 07 (2001) 047 [hep-th/0105204] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    J. García-Bellido, R. Rabadán and F. Zamora, Inflationary scenarios from branes at angles, JHEP 01 (2002) 036 [hep-th/0112147] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    K. Dasgupta, C. Herdeiro, S. Hirano and R. Kallosh, D3/D7 inflationary model and M-theory, Phys. Rev. D 65 (2002) 126002 [hep-th/0203019] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    P. Binetruy and G. Dvali, D term inflation, Phys. Lett. B 388 (1996) 241 [hep-ph/9606342] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    E. Halyo, Hybrid inflation from supergravity D terms, Phys. Lett. B 387 (1996) 43 [hep-ph/9606423] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    A.D. Linde, Axions in inflationary cosmology, Phys. Lett. B 259 (1991) 38 [INSPIRE].ADSGoogle Scholar
  8. [8]
    A.D. Linde, Hybrid inflation, Phys. Rev. D 49 (1994) 748 [astro-ph/9307002] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S. Kachru et al., Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    D. Baumann et al., On D3-brane potentials in compactifications with fluxes and wrapped D-branes, JHEP 11 (2006) 031 [hep-th/0607050] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    D. Baumann, A. Dymarsky, I.R. Klebanov, L. McAllister and P.J. Steinhardt, A delicate universe, Phys. Rev. Lett. 99 (2007) 141601 [arXiv:0705.3837] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    A. Krause and E. Pajer, Chasing brane inflation in string-theory, JCAP 07 (2008) 023 [arXiv:0705.4682] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    D. Baumann, A. Dymarsky, I.R. Klebanov and L. McAllister, Towards an explicit model of D-brane inflation, JCAP 01 (2008) 024 [arXiv:0706.0360] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    M. Haack et al., Update of D3/D7-brane inflation on K3 × T 2 / \( {{\mathbb{Z}}_2} \), Nucl. Phys. B 806 (2009) 103 [arXiv:0804.3961] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    J.P. Hsu, R. Kallosh and S. Prokushkin, On brane inflation with volume stabilization, JCAP 12 (2003) 009 [hep-th/0311077] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Hebecker, S.C. Kraus, D. Lüst, S. Steinfurt and T. Weigand, Fluxbrane inflation, Nucl. Phys. B 854 (2012) 509 [arXiv:1104.5016] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Avgoustidis, D. Cremades and F. Quevedo, Wilson line inflation, Gen. Rel. Grav. 39 (2007) 1203 [hep-th/0606031] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  18. [18]
    M. Berg, M. Haack and B. Körs, Loop corrections to volume moduli and inflation in string theory, Phys. Rev. D 71 (2005) 026005 [hep-th/0404087] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Berg, M. Haack and B. Körs, On the moduli dependence of nonperturbative superpotentials in brane inflation, hep-th/0409282 [INSPIRE].
  20. [20]
    L. McAllister, An inflaton mass problem in string inflation from threshold corrections to volume stabilization, JCAP 02 (2006) 010 [hep-th/0502001] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Arends, A. Hebecker et al., Flat directions in D7-brane moduli space and inflationary model building, work in progress.Google Scholar
  22. [22]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    C. Burgess, R. Kallosh and F. Quevedo, De Sitter string vacua from supersymmetric D terms, JHEP 10 (2003) 056 [hep-th/0309187] [INSPIRE].MathSciNetADSGoogle Scholar
  25. [25]
    G. Villadoro and F. Zwirner, De Sitter vacua via consistent D-terms, Phys. Rev. Lett. 95 (2005) 231602 [hep-th/0508167] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    A. Achucarro, B. de Carlos, J. Casas and L. Doplicher, De Sitter vacua from uplifting D-terms in effective supergravities from realistic strings, JHEP 06 (2006) 014 [hep-th/0601190] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Haack, D. Krefl, D. Lüst, A. Van Proeyen and M. Zagermann, Gaugino condensates and D-terms from D7-branes, JHEP 01 (2007) 078 [hep-th/0609211] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    D. Cremades, M.-P. Garcia del Moral, F. Quevedo and K. Suruliz, Moduli stabilisation and de Sitter string vacua from magnetised D7 branes, JHEP 05 (2007) 100 [hep-th/0701154] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    S. Krippendorf and F. Quevedo, Metastable SUSY breaking, de Sitter moduli stabilisation and Kähler moduli inflation, JHEP 11 (2009) 039 [arXiv:0901.0683] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Cicoli, M. Goodsell, J. Jaeckel and A. Ringwald, Testing string vacua in the lab: from a hidden CMB to dark forces in flux compactifications, JHEP 07 (2011) 114 [arXiv:1103.3705] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D-Branes at del Pezzo singularities: global embedding and moduli stabilisation, JHEP 09 (2012) 019 [arXiv:1206.5237] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Kachru, J. Pearson and H.L. Verlinde, Brane/flux annihilation and the string dual of a nonsupersymmetric field theory, JHEP 06 (2002) 021 [hep-th/0112197] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    P. Binetruy, G. Dvali, R. Kallosh and A. Van Proeyen, Fayet-Iliopoulos terms in supergravity and cosmology, Class. Quant. Grav. 21 (2004) 3137 [hep-th/0402046] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  35. [35]
    T. Vachaspati and A. Achucarro, Semilocal cosmic strings, Phys. Rev. D 44 (1991) 3067 [INSPIRE].
  36. [36]
    M. Hindmarsh, Existence and stability of semilocal strings, Phys. Rev. Lett. 68 (1992) 1263 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  37. [37]
    J. Urrestilla, A. Achucarro and A. Davis, D term inflation without cosmic strings, Phys. Rev. Lett. 92 (2004) 251302 [hep-th/0402032] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K. Dasgupta, J.P. Hsu, R. Kallosh, A.D. Linde and M. Zagermann, D3/D7 brane inflation and semilocal strings, JHEP 08 (2004) 030 [hep-th/0405247] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    M. Cicoli, J.P. Conlon and F. Quevedo, Systematics of string loop corrections in type IIB Calabi-Yau flux compactifications, JHEP 01 (2008) 052 [arXiv:0708.1873] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    M. Cicoli, J.P. Conlon and F. Quevedo, General analysis of LARGE volume scenarios with string loop moduli stabilisation, JHEP 10 (2008) 105 [arXiv:0805.1029] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    G. von Gersdorff and A. Hebecker, Kähler corrections for the volume modulus of flux compactifications, Phys. Lett. B 624 (2005) 270 [hep-th/0507131] [INSPIRE].ADSGoogle Scholar
  42. [42]
    M. Berg, M. Haack and B. Körs, String loop corrections to Kähler potentials in orientifolds, JHEP 11 (2005) 030 [hep-th/0508043] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Berg, M. Haack and B. Körs, On volume stabilization by quantum corrections, Phys. Rev. Lett. 96 (2006) 021601 [hep-th/0508171] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Berg, M. Haack and E. Pajer, Jumping through loops: on soft terms from large volume compactifications, JHEP 09 (2007) 031 [arXiv:0704.0737] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072 [hep-th/0404116] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    A. Klemm, B. Lian, S. Roan and S.-T. Yau, Calabi-Yau fourfolds for M-theory and F-theory compactifications, Nucl. Phys. B 518 (1998) 515 [hep-th/9701023] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    H. Jockers and J. Louis, The effective action of D7-branes in N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 705 (2005) 167 [hep-th/0409098] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    H. Jockers and J. Louis, D-terms and F-terms from D7-brane fluxes, Nucl. Phys. B 718 (2005) 203 [hep-th/0502059] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    S.E. Shandera, Slow roll in brane inflation, JCAP 04 (2005) 011 [hep-th/0412077] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J.P. Hsu and R. Kallosh, Volume stabilization and the origin of the inflaton shift symmetry in string theory, JHEP 04 (2004) 042 [hep-th/0402047] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    E. Witten, New issues in manifolds of SU(3) holonomy, Nucl. Phys. B 268 (1986) 79 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    Z. Komargodski and N. Seiberg, Comments on the Fayet-Iliopoulos term in field theory and supergravity, JHEP 06 (2009) 007 [arXiv:0904.1159] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    K.R. Dienes and B. Thomas, On the inconsistency of Fayet-Iliopoulos terms in supergravity theories, Phys. Rev. D 81 (2010) 065023 [arXiv:0911.0677] [INSPIRE].ADSGoogle Scholar
  54. [54]
    Z. Komargodski and N. Seiberg, Comments on supercurrent multiplets, supersymmetric field theories and supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    N. Seiberg, Modifying the sum over topological sectors and constraints on supergravity, JHEP 07 (2010) 070 [arXiv:1005.0002] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    J. Distler and E. Sharpe, Quantization of Fayet-Iliopoulos parameters in supergravity, Phys. Rev. D 83 (2011) 085010 [arXiv:1008.0419] [INSPIRE].ADSGoogle Scholar
  57. [57]
    T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].ADSGoogle Scholar
  58. [58]
    S. Hellerman and E. Sharpe, Sums over topological sectors and quantization of Fayet-Iliopoulos parameters, Adv. Theor. Math. Phys. 15 (2011) 1141 [arXiv:1012.5999] [INSPIRE].MathSciNetMATHGoogle Scholar
  59. [59]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].MathSciNetADSGoogle Scholar
  62. [62]
    F. Marchesano and L. Martucci, Non-perturbative effects on seven-brane Yukawa couplings, Phys. Rev. Lett. 104 (2010) 231601 [arXiv:0910.5496] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    T.W. Grimm, M. Kerstan, E. Palti and T. Weigand, On fluxed instantons and moduli stabilisation in IIB orientifolds and F-theory, Phys. Rev. D 84 (2011) 066001 [arXiv:1105.3193] [INSPIRE].ADSGoogle Scholar
  64. [64]
    P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    R. Blumenhagen, T.W. Grimm, B. Jurke and T. Weigand, F-theory uplifts and GUTs, JHEP 09 (2009) 053 [arXiv:0906.0013] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    R. Blumenhagen, T.W. Grimm, B. Jurke and T. Weigand, Global F-theory GUTs, Nucl. Phys. B 829 (2010) 325 [arXiv:0908.1784] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    M. Cicoli, A. Maharana, F. Quevedo and C. Burgess, De Sitter string vacua from dilaton-dependent non-perturbative effects, JHEP 06 (2012) 011 [arXiv:1203.1750] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    M. Rummel and A. Westphal, A sufficient condition for de Sitter vacua in type IIB string theory, JHEP 01 (2012) 020 [arXiv:1107.2115] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    R. Kallosh and A.D. Linde, Landscape, the scale of SUSY breaking and inflation, JHEP 12 (2004) 004 [hep-th/0411011] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    J.P. Conlon, R. Kallosh, A.D. Linde and F. Quevedo, Volume modulus inflation and the gravitino mass problem, JCAP 09 (2008) 011 [arXiv:0806.0809] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    S. Antusch, K. Dutta and S. Halter, Combining high-scale inflation with low-energy SUSY, JHEP 03 (2012) 105 [arXiv:1112.4488] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    N.T. Jones, H. Stoica and S.H. Henry Tye, Brane interaction as the origin of inflation, JHEP 07 (2002) 051 [hep-th/0203163] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    M. Majumdar and A. Christine-Davis, Cosmological creation of D-branes and D-branes, JHEP 03 (2002) 056 [hep-th/0202148] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    S. Sarangi and S.H. Henry Tye, Cosmic string production towards the end of brane inflation, Phys. Lett. B 536 (2002) 185 [hep-th/0204074] [INSPIRE].ADSGoogle Scholar
  75. [75]
    J. Urrestilla, N. Bevis, M. Hindmarsh, M. Kunz and A.R. Liddle, Cosmic microwave anisotropies from BPS semilocal strings, JCAP 07 (2008) 010 [arXiv:0711.1842] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    G. Dvali, R. Kallosh and A. Van Proeyen, D term strings, JHEP 01 (2004) 035 [hep-th/0312005] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    J. Urrestilla, N. Bevis, M. Hindmarsh and M. Kunz, Cosmic string parameter constraints and model analysis using small scale Cosmic Microwave Background data, JCAP 12 (2011) 021 [arXiv:1108.2730] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    M. Cicoli, C. Burgess and F. Quevedo, Anisotropic modulus stabilisation: strings at LHC scales with micron-sized extra dimensions, JHEP 10 (2011) 119 [arXiv:1105.2107] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    M. Cicoli, M. Kreuzer and C. Mayrhofer, Toric K3-fibred Calabi-Yau manifolds with del Pezzo divisors for string compactifications, JHEP 02 (2012) 002 [arXiv:1107.0383] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    I. Bena, M. Graña and N. Halmagyi, On the existence of meta-stable vacua in Klebanov-Strassler, JHEP 09 (2010) 087 [arXiv:0912.3519] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    I. Bena, G. Giecold, M. Graña, N. Halmagyi and S. Massai, The backreaction of anti-D3 branes on the Klebanov-Strassler geometry, arXiv:1106.6165 [INSPIRE].
  82. [82]
    I. Bena, M. Graña, S. Kuperstein and S. Massai, Anti-D3’ssingular to the bitter end, arXiv:1206.6369 [INSPIRE].
  83. [83]
    P. McGuirk, G. Shiu and F. Ye, Soft branes in supersymmetry-breaking backgrounds, JHEP 07 (2012) 188 [arXiv:1206.0754] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    E. Witten, Chern-Simons gauge theory as a string theory, Prog. Math. 133 (1995) 637 [hep-th/9207094] [INSPIRE].MathSciNetGoogle Scholar
  85. [85]
    M. Aganagic and C. Vafa, Mirror symmetry, D-branes and counting holomorphic discs, hep-th/0012041 [INSPIRE].
  86. [86]
    D. Lüst, P. Mayr, S. Reffert and S. Stieberger, F-theory flux, destabilization of orientifolds and soft terms on D7-branes, Nucl. Phys. B 732 (2006) 243 [hep-th/0501139] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    L. Martucci, D-branes on general N = 1 backgrounds: superpotentials and D-terms, JHEP 06 (2006) 033 [hep-th/0602129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  88. [88]
    L. Martucci, Supersymmetric D-branes on flux backgrounds, Fortsch. Phys. 55 (2007) 771 [hep-th/0701093] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  89. [89]
    A. Hebecker, A.K. Knochel and T. Weigand, A shift symmetry in the Higgs sector: experimental hints and stringy realizations, JHEP 06 (2012) 093 [arXiv:1204.2551] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    L.E. Ibáñez, F. Marchesano, D. Regalado and I. Valenzuela, The intermediate scale MSSM, the Higgs mass and F-theory unification, JHEP 07 (2012) 195 [arXiv:1206.2655] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    A. Chatzistavrakidis, E. Erfani, H.P. Nilles and I. Zavala, Axiology, JCAP 09 (2012) 006 [arXiv:1207.1128] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    M. Alim et al., Hints for off-shell mirror symmetry in type-II/F-theory compactifications, Nucl. Phys. B 841 (2010) 303 [arXiv:0909.1842] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  93. [93]
    T.W. Grimm, T.-W. Ha, A. Klemm and D. Klevers, Computing brane and flux superpotentials in F-theory compactifications, JHEP 04 (2010) 015 [arXiv:0909.2025] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  94. [94]
    T.W. Grimm, T.-W. Ha, A. Klemm and D. Klevers, Five-brane superpotentials and heterotic/F-theory duality, Nucl. Phys. B 838 (2010) 458 [arXiv:0912.3250] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  95. [95]
    H. Jockers, P. Mayr and J. Walcher, On N = 1 4d effective couplings for F-theory and heterotic vacua, Adv. Theor. Math. Phys. 14 (2010) 1433 [arXiv:0912.3265] [INSPIRE].MathSciNetGoogle Scholar
  96. [96]
    T.W. Grimm, A. Klemm and D. Klevers, Five-brane superpotentials, blow-up geometries and SU(3) structure manifolds, JHEP 05 (2011) 113 [arXiv:1011.6375] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  97. [97]
    M. Alim et al., Flat connections in open string mirror symmetry, JHEP 06 (2012) 138 [arXiv:1110.6522] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    F.-J. Xu and F.-Z. Yang, Type II/F-theory superpotentials and Ooguri-Vafa invariants of compact Calabi-Yau threefolds with three deformations, arXiv:1206.0445 [INSPIRE].
  99. [99]
    C.P. Burgess, J.M. Cline, K. Dasgupta and H. Firouzjahi, Uplifting and inflation with D3 branes, JHEP 03 (2007) 027 [hep-th/0610320] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  100. [100]
    R. Gwyn, M. Sakellariadou and S. Sypsas, Theoretical constraints on brane inflation and cosmic superstring radiation, JHEP 09 (2011) 075 [arXiv:1105.1784] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    J. Bagger and J. Wess, Supersymmetry and supergravity, JHU-TIPAC-9009, Johns HopkinsUniversity, Baltimore U.S.A. (1990) [INSPIRE].Google Scholar
  102. [102]
    M. Dine, N. Seiberg and E. Witten, Fayet-Iliopoulos terms in string theory, Nucl. Phys. B 289 (1987) 589 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  103. [103]
    J.J. Atick, L.J. Dixon and A. Sen, String calculation of Fayet-Iliopoulos d terms in arbitrary supersymmetric compactifications, Nucl. Phys. B 292 (1987) 109 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  104. [104]
    M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [INSPIRE].
  105. [105]
    L.E. Ibáñez, R. Rabadán and A. Uranga, Anomalous U(1)’s in type-I and type IIB D = 4, N =1 string vacua, Nucl. Phys. B 542 (1999) 112 [hep-th/9808139] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    V. Balasubramanian and P. Berglund, Stringy corrections to Kähler potentials, SUSY breaking and the cosmological constant problem, JHEP 11 (2004) 085 [hep-th/0408054] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Arthur Hebecker
    • 1
  • Sebastian C. Kraus
    • 1
  • Moritz Küntzler
    • 2
  • Dieter Lüst
    • 3
    • 4
  • Timo Weigand
    • 1
  1. 1.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany
  2. 2.Department of MathematicsKing’s College LondonLondonU.K.
  3. 3.Arnold-Sommerfeld-Center, Ludwig-Maximilians-UniversitätMünchenGermany
  4. 4.Max-Planck-Institut für PhysikMünchenGermany

Personalised recommendations