Advertisement

LHC Higgs signatures from extended electroweak gauge symmetry

  • Tomohiro Abe
  • Ning Chen
  • Hong-Jian He
Article

Abstract

We study LHC Higgs signatures from the extended electroweak gauge symmetry SU(2) ⊗ SU(2) ⊗ U(1). Under this gauge structure, we present an effective UV completion of the 3-site moose model with ideal fermion delocalization, which contains two neutral Higgs states (h, H) plus three new gauge bosons (W , Z ). We study the unitarity, and reveal that the exact E 2 cancellation in the longitudinal V L V L scattering amplitudes is achieved by the joint role of exchanging both spin-1 new gauge bosons W /Z and spin-0 Higgs bosons h/H. We identify the lighter Higgs state h with mass 125 GeV, and derive the unitarity bound on the mass of heavier Higgs boson H. The parameter space of this model is highly predictive. We study the production and decay signals of this 125 GeV Higgs boson h at the LHC. We demonstrate that the h Higgs boson can naturally have enhanced signals in the diphoton channel ggh → γγ, while the event rates in the reactions gghW W and gghZZ are generally suppressed relative to the SM expectation. Searching the h Higgs boson via the associated production and the vector boson fusions are also discussed for our model. We further analyze the LHC signals of the heavier Higgs boson H as a new physics discriminator from the SM. For wide mass-ranges of H, we derive constraints from the existing LHC searches, and study the discovery potential of H at the LHC (8 TeV) and LHC (14 TeV).

Keywords

Higgs Physics Beyond Standard Model 

References

  1. [1]
    F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].ADSGoogle Scholar
  4. [4]
    G. Guralnik, C. Hagen and T. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T. Kibble, Symmetry breaking in non-Abelian gauge theories, Phys. Rev. 155 (1967) 1554 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.L. Glashow, Partial symmetries of weak interactions, Nucl. Phys. 22 (1961) 579 [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    S. Weinberg, A model of leptons, Phys. Rev. Lett. 19 (1967) 1264 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Salam, Weak and electromagnetic interactions, in Elementary particle theory, Nobel symposium no. 8, N. Svartholm ed., Almqvist & Wiksells, Stockholm Sweden (1968), pg. 367 [INSPIRE].
  9. [9]
    ATLAS collaboration, F. Gianotti, Status of Standard Model Higgs searches in ATLAS, presentation at CERN, http://indico.cern.ch/conferenceDisplay.py?confId=197461, Geneva Switzerland July 4 2012.
  10. [10]
    CMS collaboration, J. Incandela, Status of the CMS SM Higgs search, presentation at CERN, http://indico.cern.ch/conferenceDisplay.py?confId=197461, Geneva Switzerland July 4 2012.
  11. [11]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  12. [12]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  13. [13]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    C.T. Hill, S. Pokorski and J. Wang, Gauge invariant effective Lagrangian for Kaluza-Klein modes, Phys. Rev. D 64 (2001) 105005 [hep-th/0104035] [INSPIRE].ADSGoogle Scholar
  15. [15]
    R.S. Chivukula, H.-J. He, J. Howard and E.H. Simmons, The structure of electroweak corrections due to extended gauge symmetries, Phys. Rev. D 69 (2004) 015009 [hep-ph/0307209] [INSPIRE].ADSGoogle Scholar
  16. [16]
    R. Foadi, S. Gopalakrishna and C. Schmidt, Higgsless electroweak symmetry breaking from theory space, JHEP 03 (2004) 042 [hep-ph/0312324] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R.S. Chivukula, E.H. Simmons, H.-J. He, M. Kurachi and M. Tanabashi, The structure of corrections to electroweak interactions in higgsless models, Phys. Rev. D 70 (2004) 075008 [hep-ph/0406077] [INSPIRE].ADSGoogle Scholar
  18. [18]
    R.S. Chivukula, E.H. Simmons, H.-J. He, M. Kurachi and M. Tanabashi, Deconstructed higgsless models with one-site delocalization, Phys. Rev. D 71 (2005) 115001 [hep-ph/0502162] [INSPIRE].ADSGoogle Scholar
  19. [19]
    E. Accomando, S. De Curtis, D. Dominici and L. Fedeli, The four site higgsless model at the LHC, Nuovo Cim. B 123 (2008) 809 [arXiv:0807.2951] [INSPIRE].ADSGoogle Scholar
  20. [20]
    R.S. Chivukula et al., A three site higgsless model, Phys. Rev. D 74 (2006) 075011 [hep-ph/0607124] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A.S. Belyaev et al., W L W L scattering in higgsless models: identifying better effective theories, Phys. Rev. D 80 (2009) 055022 [arXiv:0907.2662] [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    J.C. Pati and A. Salam, Unified lepton-hadron symmetry and a gauge theory of the basic interactions, Phys. Rev. D 8 (1973) 1240 [INSPIRE].ADSGoogle Scholar
  23. [23]
    H. Georgi and S. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    For a recent review, Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].
  25. [25]
    R. Casalbuoni, S. De Curtis, D. Dominici and R. Gatto, Effective weak interaction theory with possible new vector resonance from a strong Higgs sector, Phys. Lett. B 155 (1985) 95 [INSPIRE].ADSGoogle Scholar
  26. [26]
    R. Casalbuoni et al., Degenerate BESS model: the possibility of a low-energy strong electroweak sector, Phys. Rev. D 53 (1996) 5201 [hep-ph/9510431] [INSPIRE].ADSGoogle Scholar
  27. [27]
    M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Is ρ meson a dynamical gauge boson of hidden local symmetry?, Phys. Rev. Lett. 54 (1985) 1215 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Bando, T. Kugo and K. Yamawaki, On the vector mesons as dynamical gauge bosons of hidden local symmetries, Nucl. Phys. B 259 (1985) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Bando, T. Kugo and K. Yamawaki, Composite gauge bosons andlow-energy theoremsof hidden local symmetries, Prog. Theor. Phys. 73 (1985) 1541 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Bando, T. Fujiwara and K. Yamawaki, Generalized hidden local symmetry and the A1 meson, Prog. Theor. Phys. 79 (1988) 1140 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R.S. Chivukula, E.H. Simmons, H.-J. He, M. Kurachi and M. Tanabashi, Deconstructed higgsless models with one-site delocalization, Phys. Rev. D 71 (2005) 115001 [hep-ph/0502162] [INSPIRE].ADSGoogle Scholar
  32. [32]
    R.S. Chivukula, E.H. Simmons, H.-J. He, M. Kurachi and M. Tanabashi, Ideal fermion delocalization in higgsless models, Phys. Rev. D 72 (2005) 015008 [hep-ph/0504114] [INSPIRE].ADSGoogle Scholar
  33. [33]
    R. Casalbuoni, S. De Curtis, D. Dolce and D. Dominici, Playing with fermion couplings in higgsless models, Phys. Rev. D 71 (2005) 075015 [hep-ph/0502209] [INSPIRE].ADSGoogle Scholar
  34. [34]
    ATLAS collaboration, Search for resonant W Z production in the W Z → ℓνℓ′ℓ′ channel in \( \sqrt{s}=7\;TeV \) pp collisions with the ATLAS detector, Phys. Rev. D 85(2012) 112012 [arXiv:1204.1648] [INSPIRE].ADSGoogle Scholar
  35. [35]
    CDF collaboration, T. Aaltonen et al., Search for a new heavy gauge boson W with electron + Open image in new window event signature in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96\;TeV \), Phys. Rev. D 83 (2011) 031102 [arXiv:1012.5145] [INSPIRE].ADSGoogle Scholar
  36. [36]
    CDF collaboration, T. Aaltonen et al., A search for high-mass resonances decaying to dimuons at CDF, Phys. Rev. Lett. 102 (2009) 091805 [arXiv:0811.0053] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    D0 collaboration, V.M. Abazov et al., Search for W tb resonances with left- and right-handed couplings to fermions, Phys. Lett. B 699 (2011) 145 [arXiv:1101.0806] [INSPIRE].ADSGoogle Scholar
  38. [38]
    C. Du et al., Discovering new gauge bosons of electroweak symmetry breaking at LHC-8, Phys. Rev. D 86 (2012) 095011 [arXiv:1206.6022] [INSPIRE].ADSGoogle Scholar
  39. [39]
    H.-J. He et al., CERN LHC signatures of new gauge bosons in minimal higgsless model, Phys. Rev. D 78 (2008) 031701 [arXiv:0708.2588] [INSPIRE].ADSGoogle Scholar
  40. [40]
    T. Ohl and C. Speckner, Production of almost fermiophobic gauge bosons in the minimal higgsless model at the LHC, Phys. Rev. D 78 (2008) 095008 [arXiv:0809.0023] [INSPIRE].ADSGoogle Scholar
  41. [41]
    T. Abe, T. Masubuchi, S. Asai and J. Tanaka, Drell-Yan production of Z in the three-site higgsless model at the LHC, Phys. Rev. D 84 (2011) 055005 [arXiv:1103.3579] [INSPIRE].ADSGoogle Scholar
  42. [42]
    F. Bach and T. Ohl, Discovery prospects of an almost fermiophobic W in the three-site higgsless model at the LHC, Phys. Rev. D 85 (2012) 015002 [arXiv:1111.1551] [INSPIRE].ADSGoogle Scholar
  43. [43]
    X. Li and E. Ma, Gauge model of generation nonuniversality, Phys. Rev. Lett. 47 (1981) 1788 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    H. Georgi, E.E. Jenkins and E.H. Simmons, Ununifying the Standard Model, Phys. Rev. Lett. 62 (1989) 2789 [Erratum ibid. 63 (1989) 1540] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    H. Georgi, E.E. Jenkins and E.H. Simmons, The ununified standard model, Nucl. Phys. B 331 (1990) 541 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    H.-J. He, T.M. Tait and C. Yuan, New top flavor models with seesaw mechanism, Phys. Rev. D 62 (2000) 011702 [hep-ph/9911266] [INSPIRE].ADSGoogle Scholar
  47. [47]
    T. Jezo, M. Klasen and I. Schienbein, LHC phenomenology of general SU(2) × SU(2) × U(1) models, Phys. Rev. D 86 (2012) 035005 [arXiv:1203.5314] [INSPIRE] and references therein.
  48. [48]
    T. Abe, R.S. Chivukula, E.H. Simmons and M. Tanabashi, The flavor structure of the three-site higgsless model, Phys. Rev. D 85 (2012) 035015 [arXiv:1109.5856] [INSPIRE].ADSGoogle Scholar
  49. [49]
    M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  51. [51]
    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Uniqueness of spontaneously broken gauge theories, Phys. Rev. Lett. 30 (1973) 1268 [Erratum ibid. 31 (1973) 572] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of gauge invariance from high-energy unitarity bounds on the s matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [INSPIRE].ADSGoogle Scholar
  53. [53]
    C.H. Llewellyn Smith, High-energy behavior and gauge symmetry, Phys. Lett. B 46 (1973) 233 [INSPIRE].ADSGoogle Scholar
  54. [54]
    D.A. Dicus and V.S. Mathur, Upper bounds on the values of masses in unified gauge theories, Phys. Rev. D 7 (1973) 3111 [INSPIRE].ADSGoogle Scholar
  55. [55]
    B.W. Lee, C. Quigg and H. Thacker, The strength of weak interactions at very high-energies and the Higgs boson mass, Phys. Rev. Lett. 38 (1977) 883 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    B.W. Lee, C. Quigg and H.B. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].ADSGoogle Scholar
  57. [57]
    M.S. Chanowitz and M.K. Gaillard, The TeV physics of strongly interacting Ws and Zs, Nucl. Phys. B 261 (1985) 379 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    C. Csáki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval: unitarity without a Higgs, Phys. Rev. D 69 (2004) 055006 [hep-ph/0305237] [INSPIRE].ADSGoogle Scholar
  59. [59]
    C. Csáki, C. Grojean, L. Pilo and J. Terning, Towards a realistic model of Higgsless electroweak symmetry breaking, Phys. Rev. Lett. 92 (2004) 101802 [hep-ph/0308038] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    R.S. Chivukula, D.A. Dicus and H.-J. He, Unitarity of compactified five-dimensional Yang-Mills theory, Phys. Lett. B 525 (2002) 175 [hep-ph/0111016] [INSPIRE].MathSciNetADSGoogle Scholar
  61. [61]
    R.S. Chivukula and H.-J. He, Unitarity of deconstructed five-dimensional Yang-Mills theory, Phys. Lett. B 532 (2002) 121 [hep-ph/0201164] [INSPIRE].
  62. [62]
    R.S. Chivukula, D.A. Dicus, H.-J. He and S. Nandi, Unitarity of the higher dimensional Standard Model, Phys. Lett. B 562 (2003) 109 [hep-ph/0302263] [INSPIRE].ADSGoogle Scholar
  63. [63]
    H.-J. He, Higgsless deconstruction without boundary condition, Int. J. Mod. Phys. A 20 (2005) 3362 [hep-ph/0412113] [INSPIRE].ADSGoogle Scholar
  64. [64]
    R.S. Chivukula, E.H. Simmons, H.-J. He, M. Kurachi and M. Tanabashi, Deconstruction and elastic ππ scattering in higgsless models, Phys. Rev. D 75 (2007) 035005 [hep-ph/0612070] [INSPIRE].ADSGoogle Scholar
  65. [65]
    R.S. Chivukula, H.-J. He, M. Kurachi, E.H. Simmons and M. Tanabashi, General sum rules for W W scattering in higgsless models: equivalence theorem and deconstruction identities, Phys. Rev. D 78 (2008) 095003 [arXiv:0808.1682] [INSPIRE].ADSGoogle Scholar
  66. [66]
    H.-J. He and Z.-Z. Xianyu, Unitary higgsless and higgsful Standard Models from spontaneous dimensional reduction and weak boson scattering at the LHC, arXiv:1112.1028 [INSPIRE].
  67. [67]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the Standard Model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  68. [68]
    M. Carena, I. Low and C.E. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    E.g. J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs under LHC experimental scrutiny, EPJ Web Conf. 28 (2012) 08004 [arXiv:1202.1286] [INSPIRE] and references therein.
  70. [70]
    E.g. B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, Composite Higgs sketch, JHEP 11 (2012) 003 [arXiv:1205.4032] [INSPIRE] and references therein.
  71. [71]
    J.F. Gunion, Y. Jiang and S. Kraml, Could two NMSSM Higgs bosons be present near 125 GeV?, Phys. Rev. D 86 (2012) 071702 [arXiv:1207.1545] [INSPIRE].ADSGoogle Scholar
  72. [72]
    ATLAS collaboration, Search for the Standard Model Higgs boson in the HWW (∗) →ℓνℓν decay mode using multivariate techniques with 4.7fb−1 of ATLAS data at \( \sqrt{s}=7\;TeV \), ATLAS-CONF-2012-060, CERN, Geneva Switzerland (2012).
  73. [73]
    ATLAS collaboration, Observation of an excess of events in the search for the Standard Model Higgs boson in the HZZ (∗) → 4ℓ channel with the ATLAS detector, ATLAS-CONF-2012-092, CERN, Geneva Switzerland (2012).
  74. [74]
    ATLAS collaboration, Observation of an excess of events in the search for the Standard Model Higgs boson in the HW W (∗) → ℓνℓν channel with the ATLAS detector, ATLAS-CONF-2012-098, CERN, Geneva Switzerland (2012).
  75. [75]
    CMS collaboration, Search for the Standard Model Higgs boson decaying to W + W in the fully leptonic final state in pp collisions at \( \sqrt{s}=8\;TeV \), CMS-PAS-HIG-12-017, CERN, Geneva Switzerland (2012).
  76. [76]
    CMS collaboration, Evidence for a new state in the search for the Standard Model Higgs boson in the HZZ → 4ℓ channel in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-12-016, CERN, Geneva Switzerland (2012).
  77. [77]
    CMS collaboration, Identification of b-quark jets with the CMS experiment, arXiv:1211.4462 [INSPIRE].
  78. [78]
    B. Bellazzini, C. Petersson and R. Torre, Photophilic Higgs from sgoldstino mixing, Phys. Rev. D 86 (2012) 033016 [arXiv:1207.0803] [INSPIRE].ADSGoogle Scholar
  79. [79]
    I. Low, J. Lykken and G. Shaughnessy, Have we observed the Higgs (imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].ADSGoogle Scholar
  80. [80]
    H. Cheon and S.K. Kang, Constraining parameter space in type-II two-Higgs doublet model in light of a 125 GeV Higgs boson, arXiv:1207.1083 [INSPIRE].
  81. [81]
    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].ADSGoogle Scholar
  82. [82]
    T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].ADSGoogle Scholar
  83. [83]
    A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery, JHEP 09 (2012) 107 [arXiv:1207.1348] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    E. Hardy, J. March-Russell and J. Unwin, Precision unification in λ SUSY with a 125 GeV Higgs, JHEP 10 (2012) 072 [arXiv:1207.1435] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    M.R. Buckley and D. Hooper, Are there hints of light stops in recent Higgs search results?, Phys. Rev. D 86 (2012) 075008 [arXiv:1207.1445] [INSPIRE].ADSGoogle Scholar
  86. [86]
    J. Baglio, A. Djouadi and R. Godbole, The apparent excess in the Higgs to di-photon rate at the LHC: new physics or QCD uncertainties?, Phys. Lett. B 716 (2012) 203 [arXiv:1207.1451] [INSPIRE].ADSGoogle Scholar
  87. [87]
    J.F. Gunion, Y. Jiang and S. Kraml, Could two NMSSM Higgs bosons be present near 125 GeV?, Phys. Rev. D 86 (2012) 071702 [arXiv:1207.1545] [INSPIRE].ADSGoogle Scholar
  88. [88]
    J. Ellis and T. You, Global analysis of the Higgs candidate with Mass ∼ 125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, JHEP 11 (2012) 018 [arXiv:1207.1716] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    S. Akula, P. Nath and G. Peim, Implications of the Higgs boson discovery for mSUGRA, Phys. Lett. B 717 (2012) 188 [arXiv:1207.1839] [INSPIRE].ADSGoogle Scholar
  93. [93]
    H. An, T. Liu and L.-T. Wang, 125 GeV Higgs boson, enhanced di-photon rate and gauged U(1)PQ -extended MSSM, Phys. Rev. D 86 (2012) 075030 [arXiv:1207.2473] [INSPIRE].ADSGoogle Scholar
  94. [94]
    P. Bhupal Dev, R. Franceschini and R. Mohapatra, Bounds on TeV seesaw models from LHC Higgs data, Phys. Rev. D 86 (2012) 093010 [arXiv:1207.2756] [INSPIRE].ADSGoogle Scholar
  95. [95]
    H. Baer, V. Barger, P. Huang, A. Mustafayev and X. Tata, Radiative natural SUSY with a 125 GeV Higgs boson, Phys. Rev. Lett. 109 (2012) 161802 [arXiv:1207.3343] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    A.G. Cohen and M. Schmaltz, New charged particles from Higgs couplings, arXiv:1207.3495 [INSPIRE].
  97. [97]
    S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, New Higgs interactions and recent data from the LHC and the Tevatron, JHEP 10 (2012) 062 [arXiv:1207.3588] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    R. Sato, S. Shirai and K. Tobioka, Gluino decay as a probe of high scale supersymmetry breaking, JHEP 11 (2012) 041 [arXiv:1207.3608] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    J. Cao, Z. Heng, J.M. Yang and J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data, JHEP 10 (2012) 079 [arXiv:1207.3698] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    A. Alves et al., Explaining the Higgs decays at the LHC with an extended electroweak model, arXiv:1207.3699 [INSPIRE].
  101. [101]
    D.S. Alves, P.J. Fox and N.J. Weiner, Higgs signals in a type I 2HDM or with a sister Higgs, arXiv:1207.5499 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Institute of Modern Physics and Center for High Energy PhysicsTsinghua UniversityBeijingChina
  2. 2.Center for High Energy PhysicsPeking UniversityBeijingChina
  3. 3.Kavli Institute for Theoretical Physics China, CASBeijingChina

Personalised recommendations