Semichiral Sigma models with 4D hyperkähler geometry

  • M. Göteman
  • U. Lindström
  • M. Roček


Semichiral sigma models with a four-dimensional target space do not support extended N = (4, 4) supersymmetries off-shell [1,2]. We contribute towards the understanding of the non-manifest on-shell transformations in (2, 2) superspace by analyzing the extended on-shell supersymmetry of such models and find that a rather general ansatz for the additional supersymmetry (not involving central charge transformations) leads to hyperkähler geometry. We give non-trivial examples of these models.


Supersymmetry and Duality Extended Supersymmetry Differential and Algebraic Geometry String Duality 


  1. [1]
    M. Goteman and U. Lindström, Pseudo-hyper-Kähler geometry and generalized Kähler geometry, Lett. Math. Phys. 95 (2011) 211 [arXiv:0903.2376] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    M. Göteman, U. Lindström, M. Roček and I. Ryb, σ-models with off-shell N = (4, 4) supersymmetry and noncommuting complex structures, JHEP 09 (2010) 055 [arXiv:0912.4724] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    S.J. Gates, S.J., C.M. Hull and M. Roček, Twisted multiplets and new supersymmetric nonlinear σ-models, Nucl. Phys. B 248 (1984) 157 [INSPIRE].
  4. [4]
    M. Gualtieri, Generalized complex geometry, Ph.D. thesis, Oxford University, Oxford U.K. (2003), math/0401221 [INSPIRE].
  5. [5]
    T. Buscher, U. Lindström and M. Roček, New supersymmetric σ-models with Wess-Zumino terms, Phys. Lett. B 202 (1988) 94 [INSPIRE].MathSciNetGoogle Scholar
  6. [6]
    U. Lindström, M. Roček, R. von Unge and M. Zabzine, Generalized Kähler manifolds and off-shell supersymmetry, Commun. Math. Phys. 269 (2007) 833 [hep-th/0512164] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  7. [7]
    P.M. Crichigno, The semi-chiral quotient, hyper-Kähler manifolds and T-duality, JHEP 10 (2012) 046 [arXiv:1112.1952] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    P.S. Howe and G. Papadopoulos, Further remarks on the geometry of two-dimensional nonlinear σ-models, Class. Quant. Grav. 5 (1988) 1647 .MathSciNetADSMATHCrossRefGoogle Scholar
  9. [9]
    J. Bogaerts, A. Sevrin, S. van der Loo and S. Van Gils, Properties of semichiral superfields, Nucl. Phys. B 562 (1999) 277 [hep-th/9905141] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Dyckmanns, A twistor sphere of generalized Kähler potentials on hyper-Kähler manifolds, arXiv:1111.3893 [INSPIRE].
  11. [11]
    U. Lindström and M. Roček, Scalar tensor duality and N = 1, N = 2 nonlinear σ-models, Nucl. Phys. B 222 (1983) 285 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    N.J. Hitchin, A. Karlhede, U. Lindström and M. Roček, Hyper-Kähler metrics and supersymmetry, Commun. Math. Phys. 108 (1987) 535 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  13. [13]
    M. Göteman, N = (4, 4) supersymmetry and T-duality, to appear soon.Google Scholar
  14. [14]
    A. Karlhede, U. Lindström and M. Roček, Selfinteracting tensor multiplets in N = 2 superspace, Phys. Lett. B 147 (1984) 297 [INSPIRE].ADSGoogle Scholar
  15. [15]
    U. Lindström, Generalized N = (2, 2) supersymmetric nonlinear σ-models, Phys. Lett. B 587 (2004) 216 [hep-th/0401100] [INSPIRE].ADSGoogle Scholar
  16. [16]
    U. Lindström, R. von Unge, M. Roček, I. Ryb and M. Zabzine, T-duality for the S 1 piece in the S 3 × S 1 model, work in preparation.Google Scholar
  17. [17]
    C. Hull, A. Karlhede, U. Lindström and M. Roček, Nonlinear σ-models and their gauging in and out of superspace, Nucl. Phys. B 266 (1986) 1 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department Physics and Astronomy, Division for Theoretical PhysicsUppsala UniversityUppsalaSweden
  2. 2.C.N. Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookUSA

Personalised recommendations