Journal of High Energy Physics

, 2012:156 | Cite as

Electroweak symmetry breaking in the DSSM

  • Jonathan J. Heckman
  • Piyush Kumar
  • Cumrun Vafa
  • Brian Wecht


We study the theoretical and phenomenological consequences of modifying the Kähler potential of the MSSM two Higgs doublet sector. Such modifications naturally arise when the Higgs sector mixes with a quasi-hidden conformal sector, as in some F-theory GUT models. In the Delta-deformed Supersymmetric Standard Model (DSSM), the Higgs fields are operators with non-trivial scaling dimension 1 < Δ < 2. The Kähler metric is singular at the origin of field space due to the presence of quasi-hidden sector states which get their mass from the Higgs vevs. The presence of these extra states leads to the fact that even as Δ → 1, the DSSM does not reduce to the MSSM. In particular, the Higgs can naturally be heavier than the W - and Z-bosons. Perturbative gauge coupling unification, a large top quark Yukawa, and consistency with precision electroweak can all be maintained for Δ close to unity. Moreover, such values of Δ can naturally be obtained in string-motivated constructions. The quasi-hidden sector generically contains states charged under SU(5)GUT as well as gauge singlets, leading to a rich, albeit model-dependent, collider phenomenology.


Higgs Physics Beyond Standard Model Supersymmetric Standard Model F-Theory 


  1. [1]
    J.J. Heckman and C. Vafa, An exceptional sector for F-theory GUTs, Phys. Rev. D 83 (2011) 026006 [arXiv:1006.5459] [INSPIRE].ADSGoogle Scholar
  2. [2]
    J.J. Heckman, Y. Tachikawa, C. Vafa and B. Wecht, N = 1 SCFTs from brane monodromy, JHEP 11 (2010) 132 [arXiv:1009.0017] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-Branes and Monodromy, JHEP 07 (2011) 030 [arXiv:1010.5780] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    J.J. Heckman and S.-J. Rey, Baryon and dark matter genesis from strongly coupled strings, JHEP 06 (2011) 120 [arXiv:1102.5346] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J.J. Heckman, C. Vafa and B. Wecht, The conformal sector of F-theory GUTs, JHEP 07 (2011) 075 [arXiv:1103.3287] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    D. Stancato and J. Terning, The unhiggs, JHEP 11 (2009) 101 [arXiv:0807.3961] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Azatov, J. Galloway and M.A. Luty, Superconformal technicolor, arXiv:1106.3346 [INSPIRE].
  8. [8]
    A. Azatov, J. Galloway and M.A. Luty, Superconformal technicolor: models and phenomenology, arXiv:1106.4815 [INSPIRE].
  9. [9]
    T. Gherghetta and A. Pomarol, A distorted MSSM Higgs sector from low-scale strong dynamics, JHEP 12 (2011) 069 [arXiv:1107.4697] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    D. Poland and D. Simmons-Duffin, Bounds on 4D conformal and superconformal field theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    A. Fitzpatrick and D. Shih, Anomalous dimensions of non-chiral operators from AdS/CFT, JHEP 10 (2011) 113 [arXiv:1104.5013] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M.A. Luty, J. Terning and A.K. Grant, Electroweak symmetry breaking by strong supersymmetric dynamics at the TeV scale, Phys. Rev. D 63 (2001) 075001 [hep-ph/0006224] [INSPIRE].ADSGoogle Scholar
  14. [14]
    R. Harnik, G.D. Kribs, D.T. Larson and H. Murayama, The minimal supersymmetric fat Higgs model, Phys. Rev. D 70 (2004) 015002 [hep-ph/0311349] [INSPIRE].ADSGoogle Scholar
  15. [15]
    D. Stancato and J. Terning, Constraints on the unhiggs model from top quark decay, Phys. Rev. D 81 (2010) 115012 [arXiv:1002.1694] [INSPIRE].ADSGoogle Scholar
  16. [16]
    H. Fukushima, R. Kitano and M. Yamaguchi, Super-Topcolor, JHEP 01 (2011) 111 [arXiv:1012.5394] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    N. Craig, D. Stolarski and J. Thaler, A fat Higgs with a magnetic personality, arXiv:1106.2164 [INSPIRE].
  18. [18]
    I. Donkin and A. Hebecker, Precision gauge unification from extra Yukawa couplings, JHEP 09 (2010) 044 [arXiv:1007.3990] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M.J. Strassler, Why unparticle models with mass gaps are examples of hidden valleys, arXiv:0801.0629 [INSPIRE].
  21. [21]
    G. Cacciapaglia, G. Marandella and J. Terning, Colored unparticles, JHEP 01 (2008) 070 [arXiv:0708.0005] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    G. Cacciapaglia, G. Marandella and J. Terning, The AdS/CFT/unparticle correspondence, JHEP 02 (2009) 049 [arXiv:0804.0424] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    H. Cai, H.-C. Cheng, A.D. Medina and J. Terning, Continuum superpartners from supersymmetric unparticles, Phys. Rev. D 80 (2009) 115009 [arXiv:0910.3925] [INSPIRE].ADSGoogle Scholar
  24. [24]
    H. Cai, H.-C. Cheng, A.D. Medina and J. Terning, SUSY hidden in the continuum, arXiv:1108.3574 [INSPIRE].
  25. [25]
    I. Buchbinder, S. Kuzenko and Z. Yarevskaya, Supersymmetric effective potential: superfield approach, Nucl. Phys. B 411 (1994) 665 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M.T. Grisaru, M. Roček and R. von Unge, Effective Kähler potentials, Phys. Lett. B 383 (1996) 415 [hep-th/9605149] [INSPIRE].ADSGoogle Scholar
  27. [27]
    D. Gaiotto, A. Neitzke and Y. Tachikawa, Argyres-Seiberg duality and the Higgs branch, Commun. Math. Phys. 294 (2010) 389 [arXiv:0810.4541] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  28. [28]
    P. Kobak and A. Swann, The HyperKähler geometry associated to wolf spaces, math.DG/0001025.
  29. [29]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  30. [30]
    M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.D. Wells, TASI lecture notes: Introduction to precision electroweak analysis, hep-ph/0512342 [INSPIRE].
  32. [32]
    B.W. Lee, C. Quigg and H. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].ADSGoogle Scholar
  33. [33]
    Particle Data Group, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  34. [34]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].
  35. [35]
    H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model III: the CP-conserving limit, custodial symmetry and the oblique parameters S, T, U, Phys. Rev. D 83 (2011) 055017 [arXiv:1011.6188] [INSPIRE].ADSGoogle Scholar
  36. [36]
    G. Funk, D. O’Neil and R. Winters, What the oblique parameters S, T and U and their extensions reveal about the 2HDM: a numerical analysis, arXiv:1110.3812 [INSPIRE].
  37. [37]
    H.-J. He, N. Polonsky and S.-f. Su, Extra families, Higgs spectrum and oblique corrections, Phys. Rev. D 64 (2001) 053004 [hep-ph/0102144] [INSPIRE].ADSGoogle Scholar
  38. [38]
    G.D. Kribs, T. Plehn, M. Spannowsky and T.M. Tait, Four generations and Higgs physics, Phys. Rev. D 76 (2007) 075016 [arXiv:0706.3718] [INSPIRE].ADSGoogle Scholar
  39. [39]
    M.J. Dugan and L. Randall, The sign of S from electroweak radiative corrections, Phys. Lett. B 264 (1991) 154 [INSPIRE].ADSGoogle Scholar
  40. [40]
    E. Gates and J. Terning, Negative contributions to S from Majorana particles, Phys. Rev. Lett. 67 (1991) 1840 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    H. Georgi, Unparticle physics, Phys. Rev. Lett. 98 (2007) 221601 [hep-ph/0703260] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Han, Z. Si, K.M. Zurek and M.J. Strassler, Phenomenology of hidden valleys at hadron colliders, JHEP 07 (2008) 008 [arXiv:0712.2041] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    CMS collaboration, S. Chatrchyan et al., Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS, Phys. Lett. B 704 (2011) 123 [arXiv:1107.4771] [INSPIRE].ADSGoogle Scholar
  44. [44]
    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].ADSGoogle Scholar
  45. [45]
    M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].Google Scholar
  46. [46]
    A. Djouadi, Squark effects on Higgs boson production and decay at the LHC, Phys. Lett. B 435 (1998) 101 [hep-ph/9806315] [INSPIRE].ADSGoogle Scholar
  47. [47]
    R. Dermisek and I. Low, Probing the stop sector and the sanity of the MSSM with the Higgs boson at the LHC, Phys. Rev. D 77 (2008) 035012 [hep-ph/0701235] [INSPIRE].ADSGoogle Scholar
  48. [48]
    G. Branco et al., Theory and phenomenology of two-Higgs-doublet models, arXiv:1106.0034 [INSPIRE].
  49. [49]
    J.A. Minahan and D. Nemeschansky, An N = 2 superconformal fixed point with E6 global symmetry, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    J.A. Minahan and D. Nemeschansky, Superconformal fixed points with En global symmetry, Nucl. Phys. B 489 (1997) 24 [hep-th/9610076] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    J. Bagger and E. Witten, The gauge invariant supersymmetric nonlinear σ-model, Phys. Lett. B 118 (1982) 103 [INSPIRE].MathSciNetADSGoogle Scholar
  53. [53]
    C. Hull, A. Karlhede, U. Lindström and M. Roček, Nonlinear σ-models and their gauging in and out of superspace, Nucl. Phys. B 266 (1986) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Jonathan J. Heckman
    • 1
  • Piyush Kumar
    • 2
  • Cumrun Vafa
    • 3
  • Brian Wecht
    • 4
  1. 1.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  2. 2.Department of Physics & ISCAPColumbia UniversityNew YorkU.S.A.
  3. 3.Jefferson Physical LaboratoryHarvard UniversityCambridgeU.S.A.
  4. 4.Michigan Center for Theoretical PhysicsUniversity of MichiganAnn ArborU.S.A.

Personalised recommendations