# Natural vacuum alignment from group theory: the minimal case

## Abstract

Discrete flavour symmetries have been proven successful in explaining the leptonic flavour structure. To account for the observed mixing pattern, the flavour symmetry has to be broken to different subgroups in the charged and neutral lepton sector. However, cross-couplings via non-trivial contractions in the scalar potential force the group to break to the same subgroup. We present a solution to this problem by extending the flavour group in such a way that it preserves the flavour structure, but leads to an ’accidental’ symmetry in the flavon potential.

We have searched for symmetry groups up to order 1000, which forbid all dangerous cross-couplings and extend one of the interesting groups *A* _{4}, *T* _{7}, *S* _{4}, *T*′ or Δ(27). We have found a number of candidate groups and present a model based on one of the smallest extensions of *A* _{4}, namely \( {{Q}_8} \rtimes {{A}_4} \). We show that the most general nonsupersymmetric potential allows for the correct vacuum alignment. We investigate the effects of higher dimensional operators on the vacuum configuration and mixing angles, and give a see-saw-like UV completion. Finally, we discuss the supersymmetrization of the model. Additionally, we release the Mathematica package Discrete providing various useful tools for model building such as easily calculating invariants of discrete groups and flavon potentials.

## Keywords

Discrete and Finite Symmetries Beyond Standard Model Neutrino Physics## References

- [1]T. Schwetz, M. Tortola and J. Valle,
*Where we are on θ*_{13}*: addendum to ’Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’*,*New J. Phys.***13**(2011) 109401 [arXiv:1108.1376] [INSPIRE].ADSCrossRefGoogle Scholar - [2]T. Schwetz, M. Tortola and J. Valle,
*Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters*,*New J. Phys.***13**(2011) 063004 [arXiv:1103.0734] [INSPIRE].ADSCrossRefGoogle Scholar - [3]G. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. Rotunno,
*Evidence of θ*_{13}> 0*from global neutrino data analysis*,*Phys. Rev.***D 84**(2011) 053007 [arXiv:1106.6028] [INSPIRE].ADSGoogle Scholar - [4]M. Gonzalez-Garcia, M. Maltoni and J. Salvado,
*Updated global fit to three neutrino mixing: status of the hints of θ*_{13}> 0,*JHEP***04**(2010) 056 [arXiv:1001.4524] [INSPIRE].ADSCrossRefGoogle Scholar - [5]T2K collaboration, K. Abe et al.,
*Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam*,*Phys. Rev. Lett.***107**(2011) 041801 [arXiv:1106.2822] [INSPIRE].ADSCrossRefGoogle Scholar - [6]CHOOZ collaboration, M. Apollonio et al.,
*Search for neutrino oscillations on a long baseline at the CHOOZ nuclear power station*,*Eur. Phys. J.***C 27**(2003) 331 [hep-ex/0301017] [INSPIRE].ADSGoogle Scholar - [7]P. Harrison, D. Perkins and W. Scott,
*A redetermination of the neutrino mass squared difference in tri-maximal mixing with terrestrial matter effects*,*Phys. Lett.***B 458**(1999) 79 [hep-ph/9904297] [INSPIRE].ADSGoogle Scholar - [8]P. Harrison, D. Perkins and W. Scott,
*Tri-bimaximal mixing and the neutrino oscillation data*,*Phys. Lett.***B 530**(2002) 167 [hep-ph/0202074] [INSPIRE].ADSGoogle Scholar - [9]P. Harrison and W. Scott,
*Symmetries and generalizations of tri-bimaximal neutrino mixing*,*Phys. Lett.***B 535**(2002) 163 [hep-ph/0203209] [INSPIRE].ADSGoogle Scholar - [10]MINOS collaboration, P. Adamson et al.,
*Improved search for muon-neutrino to electron-neutrino oscillations in MINOS*,*Phys. Rev. Lett.***107**(2011) 181802 [arXiv:1108.0015] [INSPIRE].ADSCrossRefGoogle Scholar - [11]C.D. Froggatt H.B. Nielsen,
*Hierarchy of quark masses, Cabibbo angles and CP violation*,*Nucl. Phys.***B 147**(1979) 277 [INSPIRE].ADSCrossRefGoogle Scholar - [12]
- [13]E. Ma,
*A*_{4}*symmetry and neutrinos with very different masses*,*Phys. Rev.***D 70**(2004) 031901 [hep-ph/0404199] [INSPIRE].ADSGoogle Scholar - [14]K. Babu, E. Ma and J. Valle,
*Underlying A*_{4}*symmetry for the neutrino mass matrix and the quark mixing matrix*,*Phys. Lett.***B 552**(2003) 207 [hep-ph/0206292] [INSPIRE].ADSGoogle Scholar - [15]E. Ma and G. Rajasekaran,
*Softly broken A*_{4}*symmetry for nearly degenerate neutrino masses*,*Phys. Rev.***D 64**(2001) 113012 [hep-ph/0106291] [INSPIRE].ADSGoogle Scholar - [16]X.-G. He, Y.-Y. Keum and R.R. Volkas,
*A*_{4}*flavor symmetry breaking scheme for understanding quark and neutrino mixing angles*,*JHEP***04**(2006) 039 [hep-ph/0601001] [INSPIRE].ADSCrossRefGoogle Scholar - [17]G. Altarelli and F. Feruglio,
*Tri-bimaximal neutrino mixing, A*_{4}*and the modular symmetry*,*Nucl. Phys.***B 741**(2006) 215 [hep-ph/0512103] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [18]G. Altarelli and F. Feruglio,
*Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions*,*Nucl. Phys.***B 720**(2005) 64 [hep-ph/0504165] [INSPIRE].ADSCrossRefGoogle Scholar - [19]C. Luhn, S. Nasri and P. Ramond,
*Tri-bimaximal neutrino mixing and the family symmetry semidirect product of Z*(7)*and Z*(3),*Phys. Lett.***B 652**(2007) 27 [arXiv:0706.2341] [INSPIRE].ADSGoogle Scholar - [20]S. Pakvasa and H. Sugawara,
*Mass of the t quark in*SU(2) × U(1),*Phys. Lett.***B 82**(1979) 105 [INSPIRE].ADSGoogle Scholar - [21]Y. Yamanaka and H. Sugawara,
*Permutation symmetries and the fermion mass matrix*,*Phys. Rev.***D 25**(1982) 1895 [*Erratum ibid.***D29**(1984) 2135+ [INSPIRE].ADSGoogle Scholar - [22]T. Brown et al.,
*CP nonconservation and rare processes in S*^{4}*model of permutation symmetry*,*Phys. Lett.***B 141**(1984) 95 [INSPIRE].ADSGoogle Scholar - [23]T. Brown et al.,
*Neutrino masses, mixing and oscillations in S*^{4}*model of permutation symmetry*,*Phys. Rev.***D 30**(1984) 255 [INSPIRE]ADSGoogle Scholar - [24]D.-G. Lee and R. Mohapatra,
*An*SO(10) ×*S*^{4}*scenario for naturally degenerate neutrinos*,*Phys. Lett.***B 329**(1994) 463 [hep-ph/9403201] [INSPIRE].ADSGoogle Scholar - [25]E. Ma,
*Neutrino mass matrix from S*^{4}*symmetry*,*Phys. Lett.***B 632**(2006) 352 [hep-ph/0508231] [INSPIRE].ADSGoogle Scholar - [26]C. Hagedorn, M. Lindner and R. Mohapatra,
*S*^{4}*flavor symmetry and fermion masses: towards a grand unified theory of flavor*,*JHEP***06**(2006) 042 [hep-ph/0602244] [INSPIRE].ADSCrossRefGoogle Scholar - [27]Y. Cai and H.-B. Yu,
*A*SO(10)*GUT model with S*^{4}*flavor symmetry*,*Phys. Rev.***D 74**(2006) 115005 [hep-ph/0608022] [INSPIRE].ADSGoogle Scholar - [28]F. Caravaglios and S. Morisi,
*Gauge boson families in grand unified theories of fermion masses:*\( E_6^4 \times {{S}_4} \),*Int. J. Mod. Phys.***A 22**(2007) 2469 [hep-ph/0611078] [INSPIRE].MathSciNetADSGoogle Scholar - [29]H. Zhang,
*Flavor S*^{4}×*Z*(2)*symmetry and neutrino mixing*,*Phys. Lett.***B 655**(2007) 132 [hep-ph/0612214] [INSPIRE].ADSGoogle Scholar - [30]Y. Koide,
*S*^{4}*flavor symmetry embedded into*SU(3)*and lepton masses and mixing*,*JHEP***08**(2007) 086 [arXiv:0705.2275] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [31]M. Parida,
*Intermediate left-right gauge symmetry, unification of couplings and fermion masses in SUSY*SO(10) ×*S*^{4},*Phys. Rev.***D 78**(2008) 053004 [arXiv:0804.4571] [INSPIRE].ADSCrossRefGoogle Scholar - [32]F. Bazzocchi and S. Morisi,
*S*^{4}*as a natural flavor symmetry for lepton mixing*,*Phys. Rev.***D 80**(2009) 096005 [arXiv:0811.0345] [INSPIRE].ADSGoogle Scholar - [33]H. Ishimori, Y. Shimizu and M. Tanimoto,
*S*^{4}*flavor symmetry of quarks and leptons in*SU(5)*GUT*,*Prog. Theor. Phys.***121**(2009) 769 [arXiv:0812.5031] [INSPIRE].ADSMATHCrossRefGoogle Scholar - [34]F. Bazzocchi, L. Merlo and S. Morisi,
*Phenomenological consequences of see-saw in S*^{4}*based models*,*Phys. Rev.***D 80**(2009) 053003 [arXiv:0902.2849] [INSPIRE].ADSGoogle Scholar - [35]G. Altarelli, F. Feruglio and L. Merlo,
*Revisiting bimaximal neutrino mixing in a model with S*^{4}*discrete symmetry*,*JHEP***05**(2009) 020 [arXiv:0903.1940] [INSPIRE].ADSCrossRefGoogle Scholar - [36]H. Ishimori, Y. Shimizu and M. Tanimoto,
*S*^{4}*flavor model of quarks and leptons*,*Prog. Theor. Phys. Suppl.***180**(2010) 61 [arXiv:0904.2450] [INSPIRE].ADSCrossRefGoogle Scholar - [37]W. Grimus, L. Lavoura and P. Ludl,
*Is S*^{4}*the horizontal symmetry of tri-bimaximal lepton mixing?*,*J. Phys.***G 36**(2009) 115007 [arXiv:0906.2689] [INSPIRE].ADSGoogle Scholar - [38]G.-J. Ding,
*Fermion masses and flavor mixings in a model with S*^{4}*flavor symmetry*,*Nucl. Phys.***B 827**(2010) 82 [arXiv:0909.2210] [INSPIRE].ADSCrossRefGoogle Scholar - [39]D. Meloni,
*A see-saw S*^{4}*model for fermion masses and mixings*,*J. Phys.***G 37**(2010) 055201 [arXiv:0911.3591] [INSPIRE].ADSGoogle Scholar - [40]S. Morisi and E. Peinado,
*An S*^{4}*model for quarks and leptons with maximal atmospheric angle*,*Phys. Rev.***D 81**(2010) 085015 [arXiv:1001.2265] [INSPIRE].ADSGoogle Scholar - [41]B. Dutta, Y. Mimura and R. Mohapatra,
*An*SO(10)*grand unified theory of flavor*,*JHEP***05**(2010) 034 [arXiv:0911.2242] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [42]C. Lam,
*The unique horizontal symmetry of leptons*,*Phys. Rev.***D 78**(2008) 073015 [arXiv:0809.1185] [INSPIRE].ADSGoogle Scholar - [43]R. Mohapatra, M. Parida and G. Rajasekaran,
*High scale mixing unification and large neutrino mixing angles*,*Phys. Rev.***D 69**(2004) 053007 [hep-ph/0301234] [INSPIRE].ADSGoogle Scholar - [44]G.-J. Ding,
*Fermion mass hierarchies and flavor mixing from T -prime symmetry*,*Phys. Rev.***D 78**(2008) 036011 [arXiv:0803.2278] [INSPIRE].ADSGoogle Scholar - [45]P.H. Frampton and S. Matsuzaki,
*T -prime predictions of PMNS and CKM angles*,*Phys. Lett.***B 679**(2009) 347 [arXiv:0902.1140] [INSPIRE].ADSGoogle Scholar - [46]P.H. Frampton and T.W. Kephart,
*Flavor symmetry for quarks and leptons*,*JHEP***09**(2007) 110 [arXiv:0706.1186] [INSPIRE].ADSCrossRefGoogle Scholar - [47]A. Aranda,
*Neutrino mixing from the double tetrahedral group T -prime*,*Phys. Rev.***D 76**(2007) 111301 [arXiv:0707.3661] [INSPIRE].ADSGoogle Scholar - [48]P.D. Carr and P.H. Frampton,
*Group theoretic bases for tribimaximal mixing*, hep-ph/0701034 [INSPIRE]. - [49]F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo,
*Tri-bimaximal neutrino mixing and quark masses from a discrete flavour symmetry*,*Nucl. Phys.***B 775**(2007) 120 [*Erratum ibid.***836**(2010) 127-128] [hep-ph/0702194] [INSPIRE].ADSCrossRefGoogle Scholar - [50]M.-C. Chen and K. Mahanthappa,
*CKM and tri-bimaximal MNS matrices in a*SU(5) ×^{(d)}*T model*,*Phys. Lett.***B 652**(2007) 34 [arXiv:0705.0714] [INSPIRE].ADSGoogle Scholar - [51]F. Bazzocchi and I. de Medeiros Varzielas,
*Tri-bi-maximal mixing in viable family symmetry unified model with extended seesaw*,*Phys. Rev.***D 79**(2009) 093001 [arXiv:0902.3250] [INSPIRE].ADSGoogle Scholar - [52]C. Luhn, S. Nasri and P. Ramond,
*The flavor group*Δ(3*n*^{2}),*J. Math. Phys.***48**(2007) 073501 [hep-th/0701188] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [53]W. Grimus and L. Lavoura,
*A model for trimaximal lepton mixing*,*JHEP***09**(2008) 106 [arXiv:0809.0226] [INSPIRE].ADSCrossRefGoogle Scholar - [54]I. de Medeiros Varzielas, S. King and G. Ross,
*Neutrino tri-bi-maximal mixing from a non-abelian discrete family symmetry*,*Phys. Lett.***B 648**(2007) 201 [hep-ph/0607045] [INSPIRE].ADSGoogle Scholar - [55]Y. Shimizu, M. Tanimoto and A. Watanabe,
*Breaking tri-bimaximal mixing and large θ*_{13},*Prog. Theor. Phys.***126**(2011) 81 [arXiv:1105.2929] [INSPIRE].ADSMATHCrossRefGoogle Scholar - [56]R.d.A. Toorop, F. Feruglio and C. Hagedorn,
*Discrete flavour symmetries in light of T2K*,*Phys. Lett.***B 703**(2011) 447 [arXiv:1107.3486] [INSPIRE].ADSGoogle Scholar - [57]T. Kobayashi, Y. Omura and K. Yoshioka,
*Flavor symmetry breaking and vacuum alignment on orbifolds*,*Phys. Rev.***D 78**(2008) 115006 [arXiv:0809.3064] [INSPIRE].ADSGoogle Scholar - [58]K. Babu and S. Gabriel,
*Semidirect product groups, vacuum alignment and tribimaximal neutrino mixing*,*Phys. Rev.***D 82**(2010) 073014 [arXiv:1006.0203] [INSPIRE].ADSGoogle Scholar - [59]
- [60]H.U. Besche, B. Eick and E.O’Brien,
*SmallGroups — Library of all ’small’ groups. GAP package*, version included in GAP 4.4.12 http://www.gap-system.org/Packages/sgl.html. - [61]K.M. Parattu and A. Wingerter,
*Tribimaximal mixing from small groups*,*Phys. Rev.***D 84**(2011) 013011 [arXiv:1012.2842] [INSPIRE].ADSGoogle Scholar - [62]
- [63]S.F. King and C. Luhn,
*On the origin of neutrino flavour symmetry*,*JHEP***10**(2009) 093 [arXiv:0908.1897] [INSPIRE].ADSCrossRefGoogle Scholar - [64]B. Brahmachari, S. Choubey and M. Mitra,
*The A*_{4}*flavor symmetry and neutrino phenomenology*,*Phys. Rev.***D 77**(2008) 073008 [*Erratum ibid.***D 77**(2008) 119901] [arXiv:0801.3554] [INSPIRE].ADSGoogle Scholar - [65]J. Barry and W. Rodejohann,
*Deviations from tribimaximal mixing due to the vacuum expectation value misalignment in A*_{4}*models*,*Phys. Rev.***D 81**(2010) 093002 [*Erratum ibid.***D 81**(2010) 119901] [arXiv:1003.2385] [INSPIRE].ADSGoogle Scholar - [66]G. Altarelli, F. Feruglio and Y. Lin,
*Tri-bimaximal neutrino mixing from orbifolding*,*Nucl. Phys.***B 775**(2007) 31 [hep-ph/0610165] [INSPIRE].ADSCrossRefGoogle Scholar - [67]M. Honda and M. Tanimoto,
*Deviation from tri-bimaximal neutrino mixing in A*_{4}*flavor symmetry*,*Prog. Theor. Phys.***119**(2008) 583 [arXiv:0801.0181] [INSPIRE].ADSMATHCrossRefGoogle Scholar - [68]S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt,
*Running neutrino mass parameters in see-saw scenarios*,*JHEP***03**(2005) 024 [hep-ph/0501272] [INSPIRE].ADSCrossRefGoogle Scholar - [69]M. Lattanzi and J. Valle,
*Decaying warm dark matter and neutrino masses*,*Phys. Rev. Lett.*99 (2007) 121301 [arXiv:0705.2406] [INSPIRE].ADSCrossRefGoogle Scholar - [70]P. Minkowski,
*μ*→*eγ at a rate of one out of 1-billion muon decays?*,*Phys. Lett.***B 67**(1977) 421 [INSPIRE].ADSGoogle Scholar - [71]T. Yanagida,
*Horizontal symmetry and masses of neutrinos*, in the proceedings of the*Workshop on the unified theory and the baryon number in the universe*, O. Sawada ed., KEK, Tsukuba Japan (1979).Google Scholar - [72]S.L. Glashow,
*The future of elementary particle physics*, in the proceedings of the 1979*Cargèse summer institute on quarks and leptons*, M. Levy et al. eds., Plenum Press, New York U.S.A. (1980).Google Scholar - [73]M. Gell-Mann, P. Ramond and R. Slansky,
*Complex spinors and unified theories*, in Supergravity, P. van Nieuwenhuizen and D.Z. Freedman eds., North Holland, Amsterdam The Netherlands (1979).Google Scholar - [74]R.N. Mohapatra and G. Senjanović,
*Neutrino mass and spontaneous parity violation*,*Phys. Rev. Lett.***44**(1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar - [75]J. Schechter and J.W.F. Valle,
*Neutrino masses in*SU(2) × U(1)*theories*,*Phys. Rev.***D 22**(1980) 2227 [INSPIRE].ADSGoogle Scholar - [76]J. Schechter and J.W.F. Valle,
*Neutrino decay and spontaneous violation of lepton number*,*Phys. Rev.***D 25**(1982) 774 [INSPIRE].ADSGoogle Scholar - [77]M. Malinsky, J. Romao and J. Valle,
*Novel supersymmetric*SO(10)*seesaw mechanism*,*Phys. Rev. Lett.***95**(2005) 161801 [hep-ph/0506296] [INSPIRE].ADSCrossRefGoogle Scholar - [78]F. Feruglio, C. Hagedorn and L. Merlo,
*Vacuum alignment in SUSY A*_{4}*models*,*JHEP***03**(2010) 084 [arXiv:0910.4058] [INSPIRE].ADSCrossRefGoogle Scholar - [79]G. Giudice and R. Rattazzi,
*Theories with gauge mediated supersymmetry breaking*,*Phys. Rept.***322**(1999) 419 [hep-ph/9801271] [INSPIRE].ADSCrossRefGoogle Scholar - [80]S. Antusch, S.F. King, M. Malinsky and G.G. Ross,
*Solving the SUSY flavour and CP problems with non-abelian family symmetry and supergravity*,*Phys. Lett.***B 670**(2009) 383 [arXiv:0807.5047] [INSPIRE].ADSGoogle Scholar - [81]V. Dabbaghian,
*REPSN — For constructing representations of finite groups*, GAP package, Version 3.0.2, http://www.gap-system.org/Packages/repsn.html. - [82]A. Merle and R. Zwicky,
*Explicit and spontaneous breaking of*SU(3)*into its finite subgroups*, arXiv:1110.4891 [INSPIRE]. - [83]P.M. van Den Broek and J.F. Cornwell,
*Clebsch-Gordan coefficients of symmetry groups*,*Phys. Status Solidi***B 90**(1978) 211.ADSCrossRefGoogle Scholar