## Abstract

In the multiverse the scale of supersymmetry breaking, \( \widetilde{m} = {F_X}/{M_{ * }} \) _{∗}, may scan and environmental constraints on the dark matter density may exclude a large range of *m* from the reheating temperature after inflation down to values that yield a lightest supersymmetric particle (LSP) mass of order a TeV. After selection effects, for example from the cosmological constant, the distribution for \( \widetilde{m} \) in the region that gives a TeV LSP may prefer larger values. A single environmental constraint from dark matter can then lead to multi-component dark matter, including both axions and the LSP, giving a TeV-scale LSP somewhat lighter than the corresponding value for single-component LSP dark matter.

If supersymmetry breaking is mediated to the Standard Model sector at order *X* ^{†} *X* and higher, only squarks, sleptons and one Higgs doublet acquire masses of order \( \widetilde{m} \). The gravitino mass is lighter by a factor of *M* _{∗} */M* _{Pl} and the gaugino masses are suppressed by a further loop factor. This Spread Supersymmetry spectrum has two versions, one with Higgsino masses arising from supergravity effects of order the gravitino mass giving a wino LSP, and another with the Higgsino masses generated radiatively from gaugino masses giving a Higgsino LSP. The environmental restriction on dark matter fixes the LSP mass to the TeV domain, so that the squark and slepton masses are order 10^{3} TeV and 10^{6} TeV in these two schemes. We study the spectrum, dark matter and collider signals of these two versions of Spread Supersymmetry. The Higgs boson is Standard Model-like and predicted to lie in the range 110-145 GeV; monochromatic photons in cosmic rays arise from dark matter annihilations in the halo; exotic short charged tracks occur at the LHC, at least for the wino LSP; and there are the eventual possibilities of direct detection of dark matter and detailed exploration of the TeV-scale states at a future linear collider. Gauge coupling unification is at least as precise as in minimal supersymmetric theories.

If supersymmetry breaking is also mediated at order *X*, a much less hierarchical spectrum results. The spectrum in this case is similar to that of the Minimal Supersymmetric Standard Model, but with the superpartner masses 1-2 orders of magnitude larger than those expected in natural theories.

## Keywords

Beyond Standard Model Supersymmetry Breaking Superstring Vacua## References

- [1]R. Bousso and J. Polchinski,
*Quantization of four form fluxes and dynamical neutralization of the cosmological constant*,*JHEP***06**(2000) 006 [hep-th/0004134] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [2]S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi,
*de Sitter vacua in string theory*,*Phys. Rev.***D 68**(2003) 046005 [hep-th/0301240] [INSPIRE].MathSciNetADSGoogle Scholar - [3]
- [4]M.R. Douglas,
*The statistics of string/M theory vacua*,*JHEP***05**(2003) 046 [hep-th/0303194] [INSPIRE].ADSCrossRefGoogle Scholar - [5]V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel,
*The anthropic principle and the mass scale of the standard model*,*Phys. Rev.***D 57**(1998) 5480 [hep-ph/9707380] [INSPIRE].ADSGoogle Scholar - [6]T. Damour and J.F. Donoghue,
*Constraints on the variability of quark masses from nuclear binding*,*Phys. Rev.***D 78**(2008) 014014 [arXiv:0712.2968] [INSPIRE].ADSGoogle Scholar - [7]S. Weinberg,
*Anthropic bound on the cosmological constant*,*Phys. Rev. Lett.***59**(1987) 2607 [INSPIRE].ADSCrossRefGoogle Scholar - [8]H. Martel, P.R. Shapiro and S. Weinberg,
*Likely values of the cosmological constant*,*Astrophys. J.***492**(1998) 29 [astro-ph/9701099] [INSPIRE]. ADSCrossRefGoogle Scholar - [9]J. Garriga, M. Livio and A. Vilenkin,
*The cosmological constant and the time of its dominance*,*Phys. Rev.***D 61**(2000) 023503 [astro-ph/9906210] [INSPIRE].ADSGoogle Scholar - [10]R. Bousso, R. Harnik, G.D. Kribs and G. Perez,
*Predicting the cosmological constant from the causal entropic principle*,*Phys. Rev.***D 76**(2007) 043513 [hep-th/0702115] [INSPIRE].MathSciNetADSGoogle Scholar - [11]A. De Simone, A.H. Guth, M.P. Salem and A. Vilenkin,
*Predicting the cosmological constant with the scale-factor cutoff measure*,*Phys. Rev.***D 78**(2008) 063520 [arXiv:0805.2173] [INSPIRE].ADSGoogle Scholar - [12]G. Larsen, Y. Nomura and H. Roberts,
*The cosmological constant in the quantum multiverse*,*Phys. Rev.***D 84**(2011) 123512 [arXiv:1107.3556] [INSPIRE].ADSGoogle Scholar - [13]N. Arkani-Hamed and S. Dimopoulos,
*Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC*,*JHEP***06**(2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar - [14]L.J. Hall and Y. Nomura,
*a finely-predicted Higgs boson mass from a finely-tuned weak scale*,*JHEP***03**(2010) 076 [arXiv:0910.2235] [INSPIRE].ADSCrossRefGoogle Scholar - [15]
- [16]F. Wilczek,
*A model of anthropic reasoning, addressing the dark to ordinary matter coincidence*, hep-ph/0408167 [INSPIRE]. - [17]M. Tegmark, A. Aguirre, M. Rees and F. Wilczek,
*Dimensionless constants, cosmology and other dark matters*,*Phys. Rev.***D 73**(2006) 023505 [astro-ph/0511774] [INSPIRE].ADSGoogle Scholar - [18]G. Giudice and A. Masiero,
*A natural solution to the mu problem in supergravity theories*,*Phys. Lett.***B 206**(1988) 480 [INSPIRE].ADSGoogle Scholar - [19]J. Casas and C. Muñoz,
*A natural solution to the mu problem*,*Phys. Lett.***B 306**(1993) 288 [hep-ph/9302227] [INSPIRE].ADSGoogle Scholar - [20]L.J. Hall, J.D. Lykken and S. Weinberg,
*Supergravity as the Messenger of Supersymmetry Breaking*,*Phys. Rev.***D 27**(1983) 2359 [INSPIRE].ADSGoogle Scholar - [21]L.J. Hall,
*Aspects of N*= 1*supergravity models*, in*Supersymmetry and Supergravity /Nonperturbative QCD: Winter School*, Mahabaleshwar India (1984),*Lecture Notes in Physics. Vol. 208*, P. Roy and V. Singh eds., Springer, Berlin Germany (1984), pp. 197.Google Scholar - [22]R. Hempfling,
*Can the supersymmetric μ parameter be generated dynamically without a light singlet?*,*Phys. Lett.***B 329**(1994) 222 [hep-ph/9404257] [INSPIRE].ADSGoogle Scholar - [23]J.E. Kim and H.P. Nilles,
*Symmetry principles toward solutions of the μ problem*,*Mod. Phys. Lett.***A 9**(1994) 3575 [hep-ph/9406296] [INSPIRE].ADSGoogle Scholar - [24]L.J. Hall, Y. Nomura and A. Pierce,
*R symmetry and the μ problem*,*Phys. Lett.***B 538**(2002) 359 [hep-ph/0204062] [INSPIRE].ADSGoogle Scholar - [25]L.J. Hall and Y. Nomura,
*Evidence for the multiverse in the standard model and beyond*,*Phys. Rev.***D 78**(2008) 035001 [arXiv:0712.2454] [INSPIRE].ADSGoogle Scholar - [26]L. Randall and R. Sundrum,
*Out of this world supersymmetry breaking*,*Nucl. Phys.***B 557**(1999) 79 [hep-th/9810155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [27]G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi,
*Gaugino mass without singlets*,*JHEP***12**(1998) 027 [hep-ph/9810442] [INSPIRE].ADSCrossRefGoogle Scholar - [28]P.Z. Skands, et al.,
*SUSY Les Houches accord: Interfacing SUSY spectrum calculators, decay packages and event generators*,*JHEP***07**(2004) 036 [hep-ph/0311123] [INSPIRE].ADSCrossRefGoogle Scholar - [29]M. Cirelli, N. Fornengo and A. Strumia,
*Minimal dark matter*,*Nucl. Phys.***B 753**(2006) 178 [hep-ph/0512090] [INSPIRE].ADSCrossRefGoogle Scholar - [30]M.R. Buckley, L. Randall and B. Shuve,
*LHC searches for non-chiral weakly charged multiplets*,*JHEP***05**(2011) 097 [arXiv:0909.4549] [INSPIRE].ADSCrossRefGoogle Scholar - [31]Tevatron Electroweak Working Group, CDF and D0 collaborations, M. Lancaster,
*Combination of CDF and D0 results on the mass of the top quark using up to 5.8 fb*^{−1}*of data*, arXiv:1107.5255 [INSPIRE]. - [32]S. Bethke,
*The 2009 World Average of*α_{s},*Eur. Phys. J.***C 64**(2009) 689 [arXiv:0908.1135] [INSPIRE].ADSCrossRefGoogle Scholar - [33]
- [34]Super-Kamiokande collaboration, H. Nishino et al.,
*Search for Proton Decay via p*→*e*^{+}π^{0}*and p*→*μ*^{+}π^{0}*in a Large Water Cherenkov Detector*,*Phys. Rev. Lett.***102**(2009) 141801 [arXiv:0903.0676] [INSPIRE].CrossRefGoogle Scholar - [35]K. Abe et al.,
*Letter of Intent: The Hyper-Kamiokande Experiment*—*Detector Design and Physics Potential*—, arXiv:1109.3262 [INSPIRE]. - [36]Y. Kawamura,
*Triplet doublet splitting, proton stability and extra dimension*,*Prog. Theor. Phys.***105**(2001) 999 [hep-ph/0012125] [INSPIRE].ADSCrossRefGoogle Scholar - [37]L.J. Hall and Y. Nomura,
*Gauge unification in higher dimensions*,*Phys. Rev.***D 64**(2001) 055003 [hep-ph/0103125] [INSPIRE].Google Scholar - [38]L.J. Hall and Y. Nomura,
*Grand unification in higher dimensions*,*Annals Phys.***306**(2003) 132 [hep-ph/0212134] [INSPIRE].ADSMATHCrossRefGoogle Scholar - [39]Y. Nomura,
*Strongly coupled grand unification in higher dimensions*,*Phys. Rev.***D 65**(2002) 085036 [hep-ph/0108170] [INSPIRE].ADSGoogle Scholar - [40]A. Hebecker and J. March-Russell,
*Proton decay signatures of orbifold GUTs*,*Phys. Lett.***B 539**(2002) 119 [hep-ph/0204037] [INSPIRE].ADSGoogle Scholar - [41]L.J. Hall and Y. Nomura,
*A Complete theory of grand unification in five-dimensions*,*Phys. Rev.***D 66**(2002) 075004 [hep-ph/0205067] [INSPIRE].ADSGoogle Scholar - [42]R. Essig,
*Direct detection of non-chiral dark matter*,*Phys. Rev.***D 78**(2008) 015004 [arXiv:0710.1668] [INSPIRE].ADSGoogle Scholar - [43]J. Hisano, K. Ishiwata, N. Nagata and T. Takesako,
*Direct detection of electroweak-interacting dark matter*,*JHEP***07**(2011) 005 [arXiv:1104.0228] [INSPIRE].ADSCrossRefGoogle Scholar - [44]J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito,
*Direct detection of the Wino and Higgsino-like neutralino dark matters at one-loop level*,*Phys. Rev.***D 71**(2005) 015007 [hep-ph/0407168] [INSPIRE].ADSGoogle Scholar - [45]A. Abdo et al.,
*Fermi LAT Search for Photon Lines from 30 to 200 GeV and Dark Matter Implications*,*Phys. Rev. Lett.***104**(2010) 091302 [arXiv:1001.4836] [INSPIRE].ADSCrossRefGoogle Scholar - [46]G. Vertongen and C. Weniger,
*Hunting Dark Matter Gamma-Ray Lines with the Fermi LAT*,*JCAP***05**(2011) 027 [arXiv:1101.2610] [INSPIRE].ADSCrossRefGoogle Scholar - [47]U. Chattopadhyay, D. Choudhury, M. Drees, P. Konar and D. Roy,
*Looking for a heavy Higgsino LSP in collider and dark matter experiments*,*Phys. Lett.***B 632**(2006) 114 [hep-ph/0508098] [INSPIRE].ADSGoogle Scholar - [48]J.D. Wells,
*Implications of supersymmetry breaking with a little hierarchy between gauginos and scalars*, hep-ph/0306127 [INSPIRE]. - [49]J.D. Wells,
*PeV-scale supersymmetry*,*Phys. Rev.***D 71**(2005) 015013 [hep-ph/0411041] [INSPIRE].ADSGoogle Scholar - [50]J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami,
*Non-perturbative effect on thermal relic abundance of dark matter*,*Phys. Lett.***B 646**(2007) 34 [hep-ph/0610249] [INSPIRE].ADSGoogle Scholar - [51]J. Hisano, K. Ishiwata and N. Nagata,
*Gluon contribution to the dark matter direct detection*,*Phys. Rev.***D 82**(2010) 115007 [arXiv:1007.2601] [INSPIRE].ADSGoogle Scholar - [52]J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito,
*Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center*,*Phys. Rev.***D 71**(2005) 063528 [hep-ph/0412403] [INSPIRE].ADSGoogle Scholar - [53]M. Ibe, T. Moroi and T. Yanagida,
*Possible Signals of Wino LSP at the Large Hadron Collider*,*Phys. Lett.***B 644**(2007) 355 [hep-ph/0610277] [INSPIRE]. ADSGoogle Scholar - [54]J.F. Gunion and S. Mrenna,
*Probing models with near degeneracy of the chargino and LSP at a linear e*^{+}*e*^{−}*collider*,*Phys. Rev.***D 64**(2001) 075002 [hep-ph/0103167] [INSPIRE].ADSGoogle Scholar - [55]M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi,
*Big-Bang Nucleosynthesis and Gravitino*,*Phys. Rev.***D 78**(2008) 065011 [arXiv:0804.3745] [INSPIRE].ADSGoogle Scholar - [56]S. Bailly, K. Jedamzik and G. Moultaka,
*Gravitino Dark Matter and the Cosmic Lithium Abundances*,*Phys. Rev.***D 80**(2009) 063509 [arXiv:0812.0788] [INSPIRE].ADSGoogle Scholar - [57]G. Elor, H.-S. Goh, L.J. Hall, P. Kumar and Y. Nomura,
*Environmentally Selected WIMP Dark Matter with High-Scale Supersymmetry Breaking*,*Phys. Rev.***D 81**(2010) 095003 [arXiv:0912.3942] [INSPIRE].ADSGoogle Scholar