Spread Supersymmetry

  • Lawrence J. Hall
  • Yasunori Nomura


In the multiverse the scale of supersymmetry breaking, \( \widetilde{m} = {F_X}/{M_{ * }} \) , may scan and environmental constraints on the dark matter density may exclude a large range of m from the reheating temperature after inflation down to values that yield a lightest supersymmetric particle (LSP) mass of order a TeV. After selection effects, for example from the cosmological constant, the distribution for \( \widetilde{m} \) in the region that gives a TeV LSP may prefer larger values. A single environmental constraint from dark matter can then lead to multi-component dark matter, including both axions and the LSP, giving a TeV-scale LSP somewhat lighter than the corresponding value for single-component LSP dark matter.

If supersymmetry breaking is mediated to the Standard Model sector at order X X and higher, only squarks, sleptons and one Higgs doublet acquire masses of order \( \widetilde{m} \). The gravitino mass is lighter by a factor of M /M Pl and the gaugino masses are suppressed by a further loop factor. This Spread Supersymmetry spectrum has two versions, one with Higgsino masses arising from supergravity effects of order the gravitino mass giving a wino LSP, and another with the Higgsino masses generated radiatively from gaugino masses giving a Higgsino LSP. The environmental restriction on dark matter fixes the LSP mass to the TeV domain, so that the squark and slepton masses are order 103 TeV and 106 TeV in these two schemes. We study the spectrum, dark matter and collider signals of these two versions of Spread Supersymmetry. The Higgs boson is Standard Model-like and predicted to lie in the range 110-145 GeV; monochromatic photons in cosmic rays arise from dark matter annihilations in the halo; exotic short charged tracks occur at the LHC, at least for the wino LSP; and there are the eventual possibilities of direct detection of dark matter and detailed exploration of the TeV-scale states at a future linear collider. Gauge coupling unification is at least as precise as in minimal supersymmetric theories.

If supersymmetry breaking is also mediated at order X, a much less hierarchical spectrum results. The spectrum in this case is similar to that of the Minimal Supersymmetric Standard Model, but with the superpartner masses 1-2 orders of magnitude larger than those expected in natural theories.


Beyond Standard Model Supersymmetry Breaking Superstring Vacua 


  1. [1]
    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    L. Susskind, The anthropic landscape of string theory, hep-th/0302219 [INSPIRE].
  4. [4]
    M.R. Douglas, The statistics of string/M theory vacua, JHEP 05 (2003) 046 [hep-th/0303194] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel, The anthropic principle and the mass scale of the standard model, Phys. Rev. D 57 (1998) 5480 [hep-ph/9707380] [INSPIRE].ADSGoogle Scholar
  6. [6]
    T. Damour and J.F. Donoghue, Constraints on the variability of quark masses from nuclear binding, Phys. Rev. D 78 (2008) 014014 [arXiv:0712.2968] [INSPIRE].ADSGoogle Scholar
  7. [7]
    S. Weinberg, Anthropic bound on the cosmological constant, Phys. Rev. Lett. 59 (1987) 2607 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    H. Martel, P.R. Shapiro and S. Weinberg, Likely values of the cosmological constant, Astrophys. J. 492 (1998) 29 [astro-ph/9701099] [INSPIRE]. ADSCrossRefGoogle Scholar
  9. [9]
    J. Garriga, M. Livio and A. Vilenkin, The cosmological constant and the time of its dominance, Phys. Rev. D 61 (2000) 023503 [astro-ph/9906210] [INSPIRE].ADSGoogle Scholar
  10. [10]
    R. Bousso, R. Harnik, G.D. Kribs and G. Perez, Predicting the cosmological constant from the causal entropic principle, Phys. Rev. D 76 (2007) 043513 [hep-th/0702115] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    A. De Simone, A.H. Guth, M.P. Salem and A. Vilenkin, Predicting the cosmological constant with the scale-factor cutoff measure, Phys. Rev. D 78 (2008) 063520 [arXiv:0805.2173] [INSPIRE].ADSGoogle Scholar
  12. [12]
    G. Larsen, Y. Nomura and H. Roberts, The cosmological constant in the quantum multiverse, Phys. Rev. D 84 (2011) 123512 [arXiv:1107.3556] [INSPIRE].ADSGoogle Scholar
  13. [13]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    L.J. Hall and Y. Nomura, a finely-predicted Higgs boson mass from a finely-tuned weak scale, JHEP 03 (2010) 076 [arXiv:0910.2235] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A.D. Linde, Inflation and axion cosmology, Phys. Lett. B 201 (1988) 437 [INSPIRE].ADSGoogle Scholar
  16. [16]
    F. Wilczek, A model of anthropic reasoning, addressing the dark to ordinary matter coincidence, hep-ph/0408167 [INSPIRE].
  17. [17]
    M. Tegmark, A. Aguirre, M. Rees and F. Wilczek, Dimensionless constants, cosmology and other dark matters, Phys. Rev. D 73 (2006) 023505 [astro-ph/0511774] [INSPIRE].ADSGoogle Scholar
  18. [18]
    G. Giudice and A. Masiero, A natural solution to the mu problem in supergravity theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].ADSGoogle Scholar
  19. [19]
    J. Casas and C. Muñoz, A natural solution to the mu problem, Phys. Lett. B 306 (1993) 288 [hep-ph/9302227] [INSPIRE].ADSGoogle Scholar
  20. [20]
    L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the Messenger of Supersymmetry Breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].ADSGoogle Scholar
  21. [21]
    L.J. Hall, Aspects of N = 1 supergravity models, in Supersymmetry and Supergravity /Nonperturbative QCD: Winter School, Mahabaleshwar India (1984), Lecture Notes in Physics. Vol. 208, P. Roy and V. Singh eds., Springer, Berlin Germany (1984), pp. 197.Google Scholar
  22. [22]
    R. Hempfling, Can the supersymmetric μ parameter be generated dynamically without a light singlet?, Phys. Lett. B 329 (1994) 222 [hep-ph/9404257] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J.E. Kim and H.P. Nilles, Symmetry principles toward solutions of the μ problem, Mod. Phys. Lett. A 9 (1994) 3575 [hep-ph/9406296] [INSPIRE].ADSGoogle Scholar
  24. [24]
    L.J. Hall, Y. Nomura and A. Pierce, R symmetry and the μ problem, Phys. Lett. B 538 (2002) 359 [hep-ph/0204062] [INSPIRE].ADSGoogle Scholar
  25. [25]
    L.J. Hall and Y. Nomura, Evidence for the multiverse in the standard model and beyond, Phys. Rev. D 78 (2008) 035001 [arXiv:0712.2454] [INSPIRE].ADSGoogle Scholar
  26. [26]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    P.Z. Skands, et al., SUSY Les Houches accord: Interfacing SUSY spectrum calculators, decay packages and event generators, JHEP 07 (2004) 036 [hep-ph/0311123] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M.R. Buckley, L. Randall and B. Shuve, LHC searches for non-chiral weakly charged multiplets, JHEP 05 (2011) 097 [arXiv:0909.4549] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    Tevatron Electroweak Working Group, CDF and D0 collaborations, M. Lancaster, Combination of CDF and D0 results on the mass of the top quark using up to 5.8 fb −1 of data, arXiv:1107.5255 [INSPIRE].
  32. [32]
    S. Bethke, The 2009 World Average of αs, Eur. Phys. J. C 64 (2009) 689 [arXiv:0908.1135] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Hisano, Proton decay in the supersymmetric grand unified models, hep-ph/0004266 [INSPIRE].
  34. [34]
    Super-Kamiokande collaboration, H. Nishino et al., Search for Proton Decay via pe +π0 and pμ +π0 in a Large Water Cherenkov Detector, Phys. Rev. Lett. 102 (2009) 141801 [arXiv:0903.0676] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    K. Abe et al., Letter of Intent: The Hyper-Kamiokande ExperimentDetector Design and Physics Potential —, arXiv:1109.3262 [INSPIRE].
  36. [36]
    Y. Kawamura, Triplet doublet splitting, proton stability and extra dimension, Prog. Theor. Phys. 105 (2001) 999 [hep-ph/0012125] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    L.J. Hall and Y. Nomura, Gauge unification in higher dimensions, Phys. Rev. D 64 (2001) 055003 [hep-ph/0103125] [INSPIRE].Google Scholar
  38. [38]
    L.J. Hall and Y. Nomura, Grand unification in higher dimensions, Annals Phys. 306 (2003) 132 [hep-ph/0212134] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  39. [39]
    Y. Nomura, Strongly coupled grand unification in higher dimensions, Phys. Rev. D 65 (2002) 085036 [hep-ph/0108170] [INSPIRE].ADSGoogle Scholar
  40. [40]
    A. Hebecker and J. March-Russell, Proton decay signatures of orbifold GUTs, Phys. Lett. B 539 (2002) 119 [hep-ph/0204037] [INSPIRE].ADSGoogle Scholar
  41. [41]
    L.J. Hall and Y. Nomura, A Complete theory of grand unification in five-dimensions, Phys. Rev. D 66 (2002) 075004 [hep-ph/0205067] [INSPIRE].ADSGoogle Scholar
  42. [42]
    R. Essig, Direct detection of non-chiral dark matter, Phys. Rev. D 78 (2008) 015004 [arXiv:0710.1668] [INSPIRE].ADSGoogle Scholar
  43. [43]
    J. Hisano, K. Ishiwata, N. Nagata and T. Takesako, Direct detection of electroweak-interacting dark matter, JHEP 07 (2011) 005 [arXiv:1104.0228] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Direct detection of the Wino and Higgsino-like neutralino dark matters at one-loop level, Phys. Rev. D 71 (2005) 015007 [hep-ph/0407168] [INSPIRE].ADSGoogle Scholar
  45. [45]
    A. Abdo et al., Fermi LAT Search for Photon Lines from 30 to 200 GeV and Dark Matter Implications, Phys. Rev. Lett. 104 (2010) 091302 [arXiv:1001.4836] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    G. Vertongen and C. Weniger, Hunting Dark Matter Gamma-Ray Lines with the Fermi LAT, JCAP 05 (2011) 027 [arXiv:1101.2610] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    U. Chattopadhyay, D. Choudhury, M. Drees, P. Konar and D. Roy, Looking for a heavy Higgsino LSP in collider and dark matter experiments, Phys. Lett. B 632 (2006) 114 [hep-ph/0508098] [INSPIRE].ADSGoogle Scholar
  48. [48]
    J.D. Wells, Implications of supersymmetry breaking with a little hierarchy between gauginos and scalars, hep-ph/0306127 [INSPIRE].
  49. [49]
    J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].ADSGoogle Scholar
  50. [50]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].ADSGoogle Scholar
  51. [51]
    J. Hisano, K. Ishiwata and N. Nagata, Gluon contribution to the dark matter direct detection, Phys. Rev. D 82 (2010) 115007 [arXiv:1007.2601] [INSPIRE].ADSGoogle Scholar
  52. [52]
    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].ADSGoogle Scholar
  53. [53]
    M. Ibe, T. Moroi and T. Yanagida, Possible Signals of Wino LSP at the Large Hadron Collider, Phys. Lett. B 644 (2007) 355 [hep-ph/0610277] [INSPIRE]. ADSGoogle Scholar
  54. [54]
    J.F. Gunion and S. Mrenna, Probing models with near degeneracy of the chargino and LSP at a linear e + e collider, Phys. Rev. D 64 (2001) 075002 [hep-ph/0103167] [INSPIRE].ADSGoogle Scholar
  55. [55]
    M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang Nucleosynthesis and Gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].ADSGoogle Scholar
  56. [56]
    S. Bailly, K. Jedamzik and G. Moultaka, Gravitino Dark Matter and the Cosmic Lithium Abundances, Phys. Rev. D 80 (2009) 063509 [arXiv:0812.0788] [INSPIRE].ADSGoogle Scholar
  57. [57]
    G. Elor, H.-S. Goh, L.J. Hall, P. Kumar and Y. Nomura, Environmentally Selected WIMP Dark Matter with High-Scale Supersymmetry Breaking, Phys. Rev. D 81 (2010) 095003 [arXiv:0912.3942] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Berkeley Center for Theoretical Physics, Department of Physics, and Theoretical Physics Group, Lawrence Berkeley National LaboratoryUniversity of CaliforniaBerkeleyU.S.A.

Personalised recommendations