Advertisement

Heavy flavor simplified models at the LHC

  • Rouven Essig
  • Eder Izaguirre
  • Jared Kaplan
  • Jay G. Wacker
Open Access
Article

Abstract

We consider a comprehensive set of simplified models that contribute to final states with top and bottom quarks at the LHC. These simplified models are used to create minimal search strategies that ensure optimal coverage of new heavy flavor physics involving the pair production of color octets and triplets. We provide a set of benchmarks that are representative of model space, which can be used by experimentalists to perform their own optimization of search strategies. For data sets larger than 1 fb−1, same-sign dilepton and 3b search regions become very powerful. Expected sensitivities from existing and optimized searches are given.

Keywords

Phenomenological Models Supersymmetry Phenomenology 

References

  1. [1]
    S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].ADSGoogle Scholar
  2. [2]
    R. Barbieri, G. Dvali and L.J. Hall, Predictions from a U(2) flavor symmetry in supersymmetric theories, Phys. Lett. B 377 (1996) 76 [hep-ph/9512388] [INSPIRE].ADSGoogle Scholar
  3. [3]
    A.G. Cohen, D. Kaplan and A. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].ADSGoogle Scholar
  4. [4]
    N. Arkani-Hamed, M.A. Luty and J. Terning, Composite quarks and leptons from dynamical supersymmetry breaking without messengers, Phys. Rev. D 58 (1998) 015004 [hep-ph/9712389] [INSPIRE].ADSGoogle Scholar
  5. [5]
    M.A. Luty and J. Terning, Improved single sector supersymmetry breaking, Phys. Rev. D 62 (2000) 075006 [hep-ph/9812290] [INSPIRE].ADSGoogle Scholar
  6. [6]
    P. Langacker, G. Paz, L.-T. Wang and I. Yavin, Z-mediated supersymmetry breaking, Phys. Rev. Lett. 100 (2008) 041802 [arXiv:0710.1632] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Gerbush, T.J. Khoo, D.J. Phalen, A. Pierce and D. Tucker-Smith, Color-octet scalars at the CERN LHC, Phys. Rev. D 77 (2008) 095003 [arXiv:0710.3133] [INSPIRE].ADSGoogle Scholar
  8. [8]
    B. Lillie, J. Shu and T.M. Tait, Top compositeness at the Tevatron and LHC, JHEP 04 (2008)087 [arXiv:0712.3057] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    B.S. Acharya, K. Bobkov, G.L. Kane, J. Shao and P. Kumar, The G 2 -MSSM: an M-theory motivated model of particle physics, Phys. Rev. D 78 (2008) 065038 [arXiv:0801.0478] [INSPIRE].ADSGoogle Scholar
  10. [10]
    L.L. Everett, I.-W. Kim, P. Ouyang and K.M. Zurek, Moduli stabilization and supersymmetry breaking in deflected mirage mediation, JHEP 08 (2008) 102 [arXiv:0806.2330] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    A. Pomarol and J. Serra, Top quark compositeness: feasibility and implications, Phys. Rev. D 78 (2008) 074026 [arXiv:0806.3247] [INSPIRE].ADSGoogle Scholar
  12. [12]
    J.J. Heckman and C. Vafa, From F-theory GUTs to the LHC, arXiv:0809.3452 [INSPIRE].
  13. [13]
    T. Plehn and T.M. Tait, Seeking sgluons, J. Phys. G 36 (2009) 075001 [arXiv:0810.3919] [INSPIRE].ADSGoogle Scholar
  14. [14]
    K. Kumar, T.M. Tait and R. Vega-Morales, Manifestations of top compositeness at colliders, JHEP 05 (2009) 022 [arXiv:0901.3808] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Franco and S. Kachru, Single-Sector supersymmetry breaking in supersymmetric QCD, Phys. Rev. D 81 (2010) 095020 [arXiv:0907.2689] [INSPIRE].ADSGoogle Scholar
  16. [16]
    R. Sundrum, SUSY splits, but then returns, JHEP 01 (2011) 062 [arXiv:0909.5430] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    N. Craig, R. Essig, S. Franco, S. Kachru and G. Torroba, Dynamical supersymmetry breaking, with flavor, Phys. Rev. D 81 (2010) 075015 [arXiv:0911.2467] [INSPIRE].ADSGoogle Scholar
  18. [18]
    R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Pappadopulo, A non standard supersymmetric spectrum, JHEP 08 (2010) 024 [arXiv:1004.2256] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Y. Bai and B.A. Dobrescu, Heavy octets and Tevatron signals with three or four B jets, JHEP 07 (2011) 100 [arXiv:1012.5814] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    T. Gregoire, E. Katz and V. Sanz, Toptet, arXiv:1101.1294 [INSPIRE].
  21. [21]
    N. Craig, D. Green and A. Katz, (De)Constructing a natural and flavorful supersymmetric standard model, JHEP 07 (2011) 045 [arXiv:1103.3708] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    H. Baer, J. Sender and X. Tata, The search for top squarks at the Fermilab Tevatron collider, Phys. Rev. D 50 (1994) 4517 [hep-ph/9404342] [INSPIRE].ADSGoogle Scholar
  23. [23]
    H. Baer, P. Mercadante and X. Tata, Searching for bottom squarks at luminosity upgrades of the Fermilab Tevatron, Phys. Rev. D 59 (1999) 015010 [hep-ph/9808361] [INSPIRE].ADSGoogle Scholar
  24. [24]
    G.L. Kane, E. Kuflik, R. Lu and L.-T. Wang, Top channel for early SUSY discovery at the LHC, Phys. Rev. D 84 (2011) 095004 [arXiv:1101.1963] [INSPIRE].ADSGoogle Scholar
  25. [25]
    B.S. Acharya, P. Grajek, G.L. Kane, E. Kuflik, K. Suruliz, L.-T. Wang, Identifying multi-top events from gluino decay at the LHC, arXiv:0901.3367 [INSPIRE].
  26. [26]
    M. Gerbush, T.J. Khoo, D.J. Phalen, A. Pierce and D. Tucker-Smith, Color-octet scalars at the CERN LHC, Phys. Rev. D 77 (2008) 095003 [arXiv:0710.3133] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Pomarol and J. Serra, Top quark compositeness: feasibility and implications, Phys. Rev. D 78 (2008) 074026 [arXiv:0806.3247] [INSPIRE].ADSGoogle Scholar
  28. [28]
    B. Lillie, J. Shu and T.M. Tait, Top compositeness at the Tevatron and LHC, JHEP 04 (2008) 087 [arXiv:0712.3057] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    Y. Bai and B.A. Dobrescu, Heavy octets and Tevatron signals with three or four B jets, JHEP 07 (2011) 100 [arXiv:1012.5814] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    B.A. Dobrescu, K. Kong and R. Mahbubani, Massive color-octet bosons and pairs of resonances at hadron colliders, Phys. Lett. B 670 (2008) 119 [arXiv:0709.2378] [INSPIRE].ADSGoogle Scholar
  31. [31]
    J. Alwall, J.L. Feng, J. Kumar and S. Su, Bs with direct decays: Tevatron and LHC discovery prospects in the bb + MET channel, Phys. Rev. D 84 (2011) 074010 [arXiv:1107.2919] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J. Alwall, J.L. Feng, J. Kumar and S. Su, Dark matter-motivated searches for exotic 4th generation quarks in Tevatron and early LHC data, Phys. Rev. D 81 (2010) 114027 [arXiv:1002.3366] [INSPIRE].ADSGoogle Scholar
  33. [33]
    P. Meade and M. Reece, Top partners at the LHC: spin and mass measurement, Phys. Rev. D 74 (2006) 015010 [hep-ph/0601124] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J. Alwall, P. Schuster and N. Toro, Simplified models for a first characterization of new physics at the LHC, Phys. Rev. D 79 (2009) 075020 [arXiv:0810.3921] [INSPIRE].ADSGoogle Scholar
  35. [35]
    N. Arkani-Hamed, P. Schuster, N. Toro, J. Thaler, L.-T. Wang, et al., MARMOSET: the path from LHC data to the new standard model via on-shell effective theories, hep-ph/0703088 [INSPIRE].
  36. [36]
    S. Dube, J. Glatzer, S. Somalwar, A. Sood and S. Thomas, Addressing the multi-channel inverse problem at high energy coliders: a model independent approach to the search for new physics with trileptons, arXiv:0808.1605 [INSPIRE].
  37. [37]
    E. Izaguirre, M. Manhart and J.G. Wacker, Bigger, better, faster, more at the LHC, JHEP 12 (2010)030 [arXiv:1003.3886] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D.S. Alves, E. Izaguirre and J.G. Wacker, Its on: early interpretations of ATLAS results in jets and missing energy searches, Phys. Lett. B 702 (2011) 64 [arXiv:1008.0407] [INSPIRE].ADSGoogle Scholar
  39. [39]
    LHC New Physics Working Group collaboration, D. Alves et al., Simplified models for LHC new physics searches, arXiv:1105.2838 [INSPIRE].
  40. [40]
    CERN, Characterization of new physics, CERN Workshop, June 4, 2010.Google Scholar
  41. [41]
    SLAC, Topologies for early LHC searches, SLAC Workshop, September 22-25, 2010.Google Scholar
  42. [42]
    H. Baer, D. Karatas and X. Tata, On the squark and gluino mass limits from the CERN pp collider, Phys. Lett. B 183 (1987) 220 [INSPIRE].ADSGoogle Scholar
  43. [43]
    J. Alwall, M.-P. Le, M. Lisanti and J.G. Wacker, Searching for directly decaying gluinos at the Tevatron, Phys. Lett. B 666 (2008) 34 [arXiv:0803.0019] [INSPIRE].ADSGoogle Scholar
  44. [44]
    J. Alwall, M.-P. Le, M. Lisanti and J.G. Wacker, Model-Independent jets plus missing energy searches, Phys. Rev. D 79 (2009) 015005 [arXiv:0809.3264] [INSPIRE].ADSGoogle Scholar
  45. [45]
    D.S. Alves, E. Izaguirre and J.G. Wacker, Where the sidewalk ends: jets and missing energy search strategies for the 7 TeV LHC, JHEP 10 (2011) 012 [arXiv:1102.5338] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    N. Arkani-Hamed, G.L. Kane, J. Thaler and L.-T. Wang, Supersymmetry and the LHC inverse problem, JHEP 08 (2006) 070 [hep-ph/0512190] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    M.M. Nojiri and J. Shu, Two jets and missing E T signature to determine the spins of the new particles, JHEP 06 (2011) 047 [arXiv:1101.2701] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    OPAL collaboration, G. Abbiendi et al., Search for chargino and neutralino production at \( \sqrt {s} \) = 192 GeV to 209 GeV at LEP, Eur. Phys. J. C 35(2004) 1 [hep-ex/0401026] [INSPIRE].ADSGoogle Scholar
  49. [49]
    J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J. Pumplin, D. Stump, J. Huston, H. Lai, P.M. Nadolsky, W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    C.W. Bauer and B.O. Lange, Scale setting and resummation of logarithms in ppv + jets, arXiv:0905.4739 [INSPIRE].
  52. [52]
    T. Plehn, D. Rainwater and P.Z. Skands, Squark and gluino production with jets, Phys. Lett. B 645 (2007) 217 [hep-ph/0510144] [INSPIRE].ADSGoogle Scholar
  53. [53]
    J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC, JHEP 02 (2009) 017 [arXiv:0810.5350] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S. de Visscher, J. Alwall and F. Maltoni, Radiation of extra-jets in inclusive SUSY samples, AIP Conf. Proc. 1078 (2009) 293 [INSPIRE].Google Scholar
  55. [55]
    J. Alwall, K. Hiramatsu, M.M. Nojiri and Y. Shimizu, Novel reconstruction technique for new physics processes with initial state radiation, Phys. Rev. Lett. 103 (2009) 151802 [arXiv:0905.1201] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M.H. Seymour, Matrix element corrections to parton shower algorithms, Comput. Phys. Commun. 90 (1995) 95 [hep-ph/9410414] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    S. Mrenna and P. Richardson, Matching matrix elements and parton showers with HERWIG and PYTHIA, JHEP 05 (2004) 040 [hep-ph/0312274] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J. Alwall, S. Hoche, F. Krauss, N. Lavesson, L. Lönnblad, et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. Schalicke and F. Krauss, Implementing the ME + PS merging algorithm, JHEP 07 (2005) 018 [hep-ph/0503281] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    F. Krauss, A. Schalicke, S. Schumann and G. Soff, Simulating W/Z + jets production at the CERN LHC, Phys. Rev. D 72 (2005) 054017 [hep-ph/0503280] [INSPIRE].ADSGoogle Scholar
  62. [62]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    W. Beenakker, R. Hopker, M. Spira and P. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].ADSGoogle Scholar
  64. [64]
    J.M. Campbell and R. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE].CrossRefGoogle Scholar
  65. [65]
  66. [66]
    D. Krohn, J. Thaler and L.-T. Wang, Jets with variable R, JHEP 06 (2009) 059 [arXiv:0903.0392] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    CMS collaboration, Inclusive b-jet production in pp collisions at \( \sqrt {s} \) = 7 TeV, PAS-BPH-10-009.Google Scholar
  68. [68]
    ATLAS collaboration, Search for supersymmetry in pp collisions at \( \sqrt {s} \) = 7 TeV in final states with missing transverse momentum, b-jets and no leptons with the ATLAS detector, ATLAS-CONF-2011-098 (2011).Google Scholar
  69. [69]
    ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} \) = 7 TeV proton-proton collisions, Phys. Lett. B 701 (2011) 186 [arXiv:1102.5290] [INSPIRE].ADSGoogle Scholar
  70. [70]
    ATLAS collaboration, G. Aad et al., Search for supersymmetry in pp collisions at \( \sqrt {s} \) = 7 TeV in final states with missing transverse momentum and b-jets, Phys. Lett. B 701 (2011) 398 [arXiv:1103.4344] [INSPIRE].ADSGoogle Scholar
  71. [71]
    ATLAS collaboration, G. Aad et al., Search for supersymmetric particles in events with lepton pairs and large missing transverse momentum in \( \sqrt {s} \) = 7 TeV proton-proton collisions with the ATLAS experiment, Eur. Phys. J. C 71 (2011) 1682 [arXiv:1103.6214] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    ATLAS collaboration, G. Aad et al., Search for supersymmetry using final states with one lepton, jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} \) = 7 TeV pp, Phys. Rev. Lett. 106 (2011) 131802 [arXiv:1102.2357] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    ATLAS collaboration, I. Vivarelli, Search for supersymmetry in jets plus missing transverse momentum final states with the ATLAS detector, talk given at ICHEP 2011 (2011).Google Scholar
  74. [74]
    CMS collaboration, W. Kiesenhofer, SUSY and high-p T flavor tagging at CMS, arXiv:1109.2085 [INSPIRE].
  75. [75]
    CMS collaboration, V. Khachatryan et al., Search for supersymmetry in pp collisions at 7 TeV in events with jets and missing transverse energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [INSPIRE].ADSGoogle Scholar
  76. [76]
    CMS collaboration, S. Chatrchyan et al., Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at the LHC, JHEP 06 (2011) 077 [arXiv:1104.3168] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    ATLAS collaboration, G. Aad et al., Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using \( \sqrt {s} \) = 7 TeV pp collisions with the ATLAS detector, JHEP 11 (2011) 099 [arXiv:1110.2299] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    ATLAS collaboration, G. Aad et al., Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in \( \sqrt {s} \) = 7 TeV pp collisions using 1 fb −1 of ATLAS data, arXiv:1109.6606 [INSPIRE].
  79. [79]
    ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} \) 7 TeV proton-proton collisions, arXiv:1109.6572 [INSPIRE].
  80. [80]
    M. Weinberg, Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at CMS, arXiv:1110.2640 [INSPIRE].
  81. [81]
    CMS collaboration, Search for new physics in events with b-quark jets and missing transverse energy in proton-proton collisions at 7 TeV, PAS-SUS-11-006.Google Scholar
  82. [82]
    CMS collaboration, Search for supersymmetry in all-hadronic events with missing energy, PAS-SUS-11-004.Google Scholar
  83. [83]
    M. Lisanti, P. Schuster, M. Strassler and N. Toro, Study of LHC searches for a lepton and many jets, arXiv:1107.5055 [INSPIRE].
  84. [84]
    ATLAS collaboration, G. Aad et al., Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using \( \sqrt {s} \) = 7 TeV pp collisions with the ATLAS detector, JHEP 11 (2011) 099 [arXiv:1110.2299] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    Y. Kats, P. Meade, M. Reece and D. Shih, The status of GMSB after 1/fb at the LHC, arXiv:1110.6444 [INSPIRE].
  86. [86]
    C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, arXiv:1110.6670 [INSPIRE].
  87. [87]
    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, arXiv:1110.6926 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Rouven Essig
    • 1
    • 2
    • 3
  • Eder Izaguirre
    • 3
    • 4
  • Jared Kaplan
    • 3
  • Jay G. Wacker
    • 3
  1. 1.C.N. Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookU.S.A.
  2. 2.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  3. 3.Theory Group, SLAC National Accelerator LaboratoryMenlo ParkU.S.A.
  4. 4.Physics DepartmentStanford UniversityStanfordU.S.A.

Personalised recommendations