Advertisement

Measuring the bottom-quark forward-central asymmetry at the LHC

  • Dilani Kahawala
  • David Krohn
  • Matthew J. Strassler
Article

Abstract

Measurements of the top quark forward-backward asymmetry performed at the Tevatron suggest that new-physics may be playing a role in tt production. To better understand the source of the asymmetry, recent proposals have called for a measurement of the bottom and charm forward-backward asymmetries at the Tevatron, using jets with embedded muons. Here we propose a corresponding measurement of the bottom quark forward-central asymmetry designed to look for similar effects in the b-sector at ATLAS and CMS. We construct a set of cuts designed to enhance sensitivity to this asymmetry, and test our analysis on a toy axigluon model representative of those used to explain the top asymmetry. We find that if the relevant new-physics couplings to the bottom quark are similar to those of the top, then the effects should be visible at the 2σ level in less than 10 fb−1 of 7 TeV LHC data. Such a measurement would be of general importance, and would provide valuable model-building input, serving to restrict the set of models put forward to explain the Tevatron tt anomaly. However, a relatively low trigger threshold on non-isolated muons inside hard jets must be maintained to allow for this measurement.

Keywords

Beyond Standard Model B-Physics 

References

  1. [1]
    Measurement of the Forward Backward Asymmetry in Top Pair Production in the Dilepton Decay Channel using 5.1 fb −1, CDF note 103098 http://www-cdf.fnal.gov/physics/new/top/2011/DilAfb/.
  2. [2]
    CDF collaboration, T. Aaltonen et al., Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark Pair Production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [INSPIRE].ADSGoogle Scholar
  3. [3]
    CDF collaboration, T. Aaltonen et al., Forward-Backward Asymmetry in Top Quark Production in \( p\bar{p} \) Collisions at sqrts = 1.96 TeV, Phys. Rev. Lett. 101 (2008) 202001 [arXiv:0806.2472] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D0 collaboration, V. Abazov et al., First measurement of the forward-backward charge asymmetry in top quark pair production, Phys. Rev. Lett. 100 (2008) 142002 [arXiv:0712.0851] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D0 collaboration, V.M. Abazov et al., Forward-backward asymmetry in top quark-antiquark production, arXiv:1107.4995 [INSPIRE].
  6. [6]
    J.H. Kuhn and G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders, Phys. Rev. D 59 (1999) 054017 [hep-ph/9807420] [INSPIRE].ADSGoogle Scholar
  7. [7]
    J.H. Kuhn and G. Rodrigo, Charge asymmetry in hadroproduction of heavy quarks, Phys. Rev. Lett. 81 (1998) 49 [hep-ph/9802268] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J.H. Kuhn and G. Rodrigo, Charge asymmetries of top quarks at hadron colliders revisited, arXiv:1109.6830 [INSPIRE].
  9. [9]
    G. Rodrigo and P. Ferrario, Charge asymmetry: A Theory appraisal, Nuovo Cim. C 33 (2010)04 [arXiv:1007.4328] [INSPIRE].Google Scholar
  10. [10]
    Measurement of the Charge Asymmetry in Top Quark Pair Production, PAS-TOP-11-014 (Measurement of the Charge Asymmetry in Top Quark Pair Production).Google Scholar
  11. [11]
    ATLAS collaboration, Measurement of the charge asymmetry in top quark pair production in pp collisions at \( \sqrt {s} = 7TeV \) using the ATLAS detector, ATLAS-CONF-2011-106 (2011).Google Scholar
  12. [12]
    Y. Bai, J.L. Hewett, J. Kaplan and T.G. Rizzo, LHC Predictions from a Tevatron Anomaly in the Top Quark Forward-Backward Asymmetry, JHEP 03 (2011) 003 [arXiv:1101.5203] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    P. Ferrario and G. Rodrigo, Constraining heavy colored resonances from top-antitop quark events, Phys. Rev. D 80 (2009) 051701 [arXiv:0906.5541] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S. Jung, H. Murayama, A. Pierce and J.D. Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D 81 (2010) 015004 [arXiv:0907.4112] [INSPIRE].ADSGoogle Scholar
  15. [15]
    F. del Aguila, J. de Blas, P. Langacker and M. Pérez-Victoria, Impact of extra particles on indirect Zlimits, Phys. Rev. D 84 (2011) 015015 [arXiv:1104.5512] [INSPIRE].ADSGoogle Scholar
  16. [16]
    G.F. Giudice, B. Gripaios and R. Sundrum, Flavourful Production at Hadron Colliders, JHEP 08 (2011) 055 [arXiv:1105.3161] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Djouadi, G. Moreau and F. Richard, Forward-backward asymmetries of the bottom and top quarks in warped extra-dimensional models: LHC predictions from the LEP and Tevatron anomalies, Phys. Lett. B 701 (2011) 458 [arXiv:1105.3158] [INSPIRE].ADSGoogle Scholar
  18. [18]
    R. Barcelo, A. Carmona, M. Masip and J. Santiago, Gluon excitations in t tbar production at hadron colliders, Phys. Rev. D 84 (2011) 014024[arXiv:1105.3333] [INSPIRE].ADSGoogle Scholar
  19. [19]
    C.-H. Chen, S.S. Law and R.-H. Li, Rare B decays and Tevatron top-pair asymmetry, J. Phys. G 38 (2011) 115008 [arXiv:1104.1497] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A.E. Nelson, T. Okui and T.S. Roy, A unified, flavor symmetric explanation for the t-tbar asymmetry and Wjj excess at CDF, Phys. Rev. D 84 (2011) 094007 [arXiv:1104.2030] [INSPIRE].ADSGoogle Scholar
  21. [21]
    X.-P. Wang, Y.-K. Wang, B. Xiao, J. Xu and S.-h. Zhu, New color-octet vector boson revisited, Phys. Rev. D 83 (2011) 115010 [arXiv:1104.1917] [INSPIRE].
  22. [22]
    C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, An Effective approach to same sign top pair production at the LHC and the forward-backward asymmetry at the Tevatron, Phys. Lett. B 703 (2011) 306 [arXiv:1104.1798] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S. Jung, A. Pierce and J.D. Wells, Top quark asymmetry and dijet resonances, Phys. Rev. D 84 (2011)055018 [arXiv:1104.3139] [INSPIRE].ADSGoogle Scholar
  24. [24]
    G. Zhu, B physics constraints on a flavor symmetric scalar model to account for the tt asymmetry and Wjj excess at CDF, Phys. Lett. B 703 (2011) 142 [arXiv:1104.3227] [INSPIRE].ADSGoogle Scholar
  25. [25]
    P.J. Fox, J. Liu, D. Tucker-Smith and N. Weiner, An Effective Z’, Phys. Rev. D 84 (2011) 115006 [arXiv:1104.4127] [INSPIRE].ADSGoogle Scholar
  26. [26]
    D.-W. Jung, P. Ko and J.S. Lee, Possible Common Origin of the Top Forward-backward Asymmetry and the CDF Dijet Resonance, Phys. Rev. D 84 (2011) 055027 [arXiv:1104.4443] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J. Shu, K. Wang and G. Zhu, A Revisit to Top Quark Forward-Backward Asymmetry, arXiv:1104.0083 [INSPIRE].
  28. [28]
    A. Rajaraman, Z. Surujon and T.M. Tait, Asymmetric Leptons for Asymmetric Tops, arXiv:1104.0947 [INSPIRE].
  29. [29]
    J. Aguilar-Saavedra and M. Pérez-Victoria, No like-sign tops at Tevatron: Constraints on extended models and implications for the t tbar asymmetry, Phys. Lett. B 701 (2011) 93 [arXiv:1104.1385] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M.R. Buckley, D. Hooper, J. Kopp and E. Neil, Light ZBosons at the Tevatron, Phys. Rev. D 83 (2011) 115013 [arXiv:1103.6035] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Jung, A. Pierce and J.D. Wells, Top quark asymmetry from a non-Abelian horizontal symmetry, Phys. Rev. D 83 (2011) 114039 [arXiv:1103.4835] [INSPIRE].ADSGoogle Scholar
  32. [32]
    S. Casagrande, Indirect tests of the Randall-Sundrum model, arXiv:1103.4131 [INSPIRE].
  33. [33]
    Z. Ligeti, G.M. Tavares and M. Schmaltz, Explaining the t tbar forward-backward asymmetry without dijet or flavor anomalies, JHEP 06 (2011) 109 [arXiv:1103.2757] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    C. Grojean, E. Salvioni and R. Torre, A weakly constrained Wat the early LHC, JHEP 07 (2011)002 [arXiv:1103.2761] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    K. Blum, C. Delaunay, O. Gedalia, Y. Hochberg, S.J. Lee, et al., Implications of the CDF \( t\bar{t} \) Forward-Backward Asymmetry for Boosted Top Physics, Phys. Lett. B 702 (2011) 364 [arXiv:1102.3133] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [35]
    R. Foot, Top quark forward-backward asymmetry from SU(Nc ) color, Phys. Rev. D 83 (2011)114013 [arXiv:1103.1940] [INSPIRE].ADSGoogle Scholar
  37. [36]
    E. Barreto, Y. Coutinho and J. Sa Borges, Top quark forward-backward asymmetry from the 3-3-1 model, Phys. Rev. D 83 (2011) 054006 [arXiv:1103.1266] [INSPIRE].ADSGoogle Scholar
  38. [37]
    A.R. Zerwekh, The Axigluon, a Four-Site Model and the Top Quark Forward-Backward Asymmetry at the Tevatron, Phys. Lett. B 704 (2011) 62 [arXiv:1103.0956] [INSPIRE].ADSGoogle Scholar
  39. [38]
    G. Isidori and J.F. Kamenik, Forward-Backward t tbar Asymmetry from Anomalous Stop Pair Production, Phys. Lett. B 700 (2011) 145 [arXiv:1103.0016] [INSPIRE].ADSGoogle Scholar
  40. [39]
    K.M. Patel and P. Sharma, Forward-backward asymmetry in top quark production from light colored scalars in SO(10) model, JHEP 04 (2011) 085 [arXiv:1102.4736] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [40]
    B. Grinstein, A.L. Kagan, M. Trott and J. Zupan, Forward-backward asymmetry in tt‾ production from flavour symmetries, Phys. Rev. Lett. 107 (2011) 012002 [arXiv:1102.3374] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [41]
    V. Barger, W.-Y. Keung and C.-T. Yu, Tevatron Asymmetry of Tops in a W,ZModel, Phys. Lett. B 698 (2011) 243 [arXiv:1102.0279] [INSPIRE].ADSGoogle Scholar
  43. [42]
    J. Shelton and K.M. Zurek, Maximal flavor violation from new right-handed gauge bosons, Phys. Rev. D 83 (2011) 091701 [arXiv:1101.5392] [INSPIRE].ADSGoogle Scholar
  44. [43]
    C. Delaunay, O. Gedalia, S.J. Lee, G. Perez and E. Ponton, Extraordinary Phenomenology from Warped Flavor Triviality, Phys. Lett. B 703 (2011) 486 [arXiv:1101.2902] [INSPIRE].ADSGoogle Scholar
  45. [44]
    K. Cheung and T.-C. Yuan, Top Quark Forward-Backward Asymmetry in the Large Invariant Mass Region, Phys. Rev. D 83 (2011) 074006 [arXiv:1101.1445] [INSPIRE].ADSGoogle Scholar
  46. [45]
    Y. Cui, Z. Han and M.D. Schwartz, Top condensation as a motivated explanation of the top forward-backward asymmetry, JHEP 07 (2011) 127 [arXiv:1106.3086] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [46]
    G.M. Tavares and M. Schmaltz, Explaining the t-tbar asymmetry with a light axigluon, Phys. Rev. D 84 (2011) 054008 [arXiv:1107.0978] [INSPIRE].ADSGoogle Scholar
  48. [47]
    J. Aguilar-Saavedra and M. Pérez-Victoria, Shaping the top asymmetry, Phys. Lett. B 705 (2011)228 [arXiv:1107.2120] [INSPIRE].ADSGoogle Scholar
  49. [48]
    U. Haisch and S. Westhoff, Massive Color-Octet Bosons: Bounds on Effects in Top-Quark Pair Production, JHEP 08 (2011) 088 [arXiv:1106.0529] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [49]
    M. Bauer, F. Goertz, U. Haisch, T. Pfoh and S. Westhoff, Top-Quark Forward-Backward Asymmetry in Randall-Sundrum Models Beyond the Leading Order, JHEP 11 (2010) 039 [arXiv:1008.0742] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [50]
    J.F. Kamenik, J. Shu and J. Zupan, Review of new physics effects in t-tbar production, arXiv:1107.5257 [INSPIRE].
  52. [51]
    CMS collaboration, S. Chatrchyan et al., Search for Same-Sign Top-Quark Pair Production at sqrt(s) = 7 TeV and Limits on Flavour Changing Neutral Currents in the Top Sector, JHEP 08 (2011) 005 [arXiv:1106.2142] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [52]
    M.I. Gresham, I.-W. Kim and K.M. Zurek, On Models of New Physics for the Tevatron Top AF B , Phys. Rev. D 83 (2011) 114027 [arXiv:1103.3501] [INSPIRE].ADSGoogle Scholar
  54. [53]
    M.I. Gresham, I.-W. Kim and K.M. Zurek, Tevatron Top AF B Versus LHC Top Physics, arXiv:1107.4364 [INSPIRE].
  55. [54]
    Y.-k. Wang, B. Xiao and S.-h. Zhu, One-side Forward-backward Asymmetry in Top Quark Pair Production at CERN Large Hadron Collider, Phys. Rev. D 82 (2010) 094011 [arXiv:1008.2685] [INSPIRE].ADSGoogle Scholar
  56. [55]
    J.L. Hewett, J. Shelton, M. Spannowsky, T.M. Tait and M. Takeuchi, AF B Meets LHC, Phys. Rev. D 84 (2011) 054005 [arXiv:1103.4618] [INSPIRE].ADSGoogle Scholar
  57. [56]
    B. Xiao, Y.-K. Wang, Z.-Q. Zhou and S.-h. Zhu, Edge Charge Asymmetry in Top Pair Production at the LHC, Phys. Rev. D 83 (2011) 057503 [arXiv:1101.2507] [INSPIRE].ADSGoogle Scholar
  58. [57]
    B. Bhattacherjee, S.S. Biswal and D. Ghosh, Top quark forward-backward asymmetry at Tevatron and its implications at the LHC, Phys. Rev. D 83 (2011) 091501 [arXiv:1102.0545] [INSPIRE].ADSGoogle Scholar
  59. [58]
    J. Aguilar-Saavedra and M. Pérez-Victoria, Asymmetries in t t production: LHC versus Tevatron, arXiv:1105.4606 [INSPIRE].
  60. [59]
    E.L. Berger, Q.-H. Cao, C.-R. Chen and H. Zhang, Top Quark Polarization As A Probe of Models with Extra Gauge Bosons, Phys. Rev. D 83 (2011) 114026 [arXiv:1103.3274] [INSPIRE].ADSGoogle Scholar
  61. [60]
    R.M. Godbole, K. Rao, S.D. Rindani and R.K. Singh, On measurement of top polarization as a probe of tt production mechanisms at the LHC, JHEP 11 (2010) 144 [arXiv:1010.1458] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [61]
    J. Cao, L. Wu and J.M. Yang, New physics effects on top quark spin correlation and polarization at the LHC: a comparative study in different models, Phys. Rev. D 83 (2011) 034024 [arXiv:1011.5564] [INSPIRE].ADSGoogle Scholar
  63. [62]
    D.-W. Jung, P. Ko and J.S. Lee, Longitudinal top polarization as a probe of a possible origin of forward-backward asymmetry of the top quark at the Tevatron, Phys. Lett. B 701 (2011) 248 [arXiv:1011.5976] [INSPIRE].ADSGoogle Scholar
  64. [63]
    D. Choudhury, R.M. Godbole, S.D. Rindani and P. Saha, Top polarization, forward-backward asymmetry and new physics, Phys. Rev. D 84 (2011) 014023 [arXiv:1012.4750] [INSPIRE].ADSGoogle Scholar
  65. [64]
    W. Bernreuther and Z.-G. Si, Distributions and correlations for top quark pair production and decay at the Tevatron and LHC., Nucl. Phys. B 837 (2010) 90 [arXiv:1003.3926] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [65]
    K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production and decay at hadron colliders, JHEP 08 (2009) 049 [arXiv:0907.3090] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [66]
    D. Krohn, T. Liu, J. Shelton and L.-T. Wang, A Polarized View of the Top Asymmetry, Phys. Rev. D 84 (2011) 074034 [arXiv:1105.3743] [INSPIRE].ADSGoogle Scholar
  68. [67]
    Y. Bai and Z. Han, Improving the Top Quark Forward-Backward Asymmetry Measurement at the LHC, Journal of High Energy Physics (JHEP) (2011) [arXiv:1106.5071] [INSPIRE].
  69. [68]
    M.I. Gresham, I.-W. Kim and K.M. Zurek, Searching for Top Flavor Violating Resonances, Phys. Rev. D 84 (2011) 034025 [arXiv:1102.0018] [INSPIRE].ADSGoogle Scholar
  70. [69]
    N. Craig, C. Kilic and M.J. Strassler, LHC Charge Asymmetry as Constraint on Models for the Tevatron Top Anomaly, Phys. Rev. D 84 (2011) 035012 [arXiv:1103.2127] [INSPIRE].ADSGoogle Scholar
  71. [70]
    J. Cao, L. Wang, L. Wu and J.M. Yang, Top quark forward-backward asymmetry, FCNC decays and like-sign pair production as a joint probe of new physics, Phys. Rev. D 84 (2011) 074001 [arXiv:1101.4456] [INSPIRE].ADSGoogle Scholar
  72. [71]
    E. Alvarez, L. Da Rold, J.I.S. Vietto and A. Szynkman, Phenomenology of a light gluon resonance in top-physics at Tevatron and LHC, JHEP 09 (2011) 007 [arXiv:1107.1473] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [72]
    E.L. Berger, Q.-H. Cao, C.-R. Chen, C.S. Li and H. Zhang, Top Quark Forward-Backward Asymmetry and Same-Sign Top Quark Pairs, Phys. Rev. Lett. 106 (2011) 201801 [arXiv:1101.5625] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [73]
    M.J. Strassler, A Note on Measuring Charm and Bottom Forward-Backward Asymmetries at the Tevatron, arXiv:1102.0736 [INSPIRE].
  75. [74]
    Y.-k. Wang, B. Xiao and S.-h. Zhu, One-side forward-backward asymmetry at the LHC, Phys. Rev. D 83 (2011) 015002 [arXiv:1011.1428] [INSPIRE].ADSGoogle Scholar
  76. [75]
    L.M. Sehgal and M. Wanninger, Forward - Backward Asymmetry In Two Jet Events: Signature Of Axigluons In Proton - Anti-proton Collisions, Phys. Lett. B 200 (1988) 211 [INSPIRE].ADSGoogle Scholar
  77. [76]
    J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [77]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [78]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [79]
    M. Cacciari, G. Salam and G. Soyez, FastJet, http://fastjet.fr/.
  81. [80]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the kt jet-finder, Phys. Lett. B 641 (2006)57 [hep-ph/0512210] [INSPIRE].ADSGoogle Scholar
  82. [81]
    M. Cacciari, G.P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [82]
    The ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics, arXiv:0901.0512 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Dilani Kahawala
    • 1
  • David Krohn
    • 1
  • Matthew J. Strassler
    • 2
  1. 1.Department of PhysicsHarvard UniversityCambridgeU.S.A
  2. 2.New High Energy Theory Center, Department of Physics and AstronomyRutgers UniversityPiscatawayU.S.A

Personalised recommendations