Kinetic mixing of U(1)s in heterotic orbifolds

  • Mark Goodsell
  • Saúl Ramos-Sánchez
  • Andreas Ringwald
Open Access


We study kinetic mixing between massless U(1) gauge symmetries in the bosonic formulation of heterotic orbifold compactifications. For non-prime Z N factorisable orbifolds, we find a simple expression of the mixing in terms of the properties of the \( \mathcal{N} \) =2subsectors,whichhelpsunderstandunderwhatconditionsmixingcanoccur. With this tool, we analyze Z6-II heterotic orbifolds and find non-vanishing mixing even without including Wilson lines. We show that some semi-realistic models of the Mini-Landscape admit supersymmetric vacua with mixing between the hypercharge and an additional U(1), which can be broken at low energies. We finally discuss some phenomenologically appealing possibilities that hidden photons in heterotic orbifolds allow.


Strings and branes phenomenology Phenomenology of Field Theories in Higher Dimensions 


  1. [1]
    D. Feldman, B. Körs and P. Nath, Extra-weakly interacting dark matter, Phys. Rev. D 75 (2007) 023503 [hep-ph/0610133] [INSPIRE].Google Scholar
  2. [2]
    D. Feldman, Z. Liu and P. Nath, The Stückelberg Z-prime extension with kinetic mixing and milli-charged dark matter from the hidden sector, Phys. Rev. D 75 (2007) 115001 [hep-ph/0702123] [INSPIRE].ADSGoogle Scholar
  3. [3]
    M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D. Hooper and K.M. Zurek, A natural supersymmetric model with MeV dark matter, Phys. Rev. D 77 (2008) 087302 [arXiv:0801.3686] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    N. Arkani-Hamed and N. Weiner, LHC signals for a superunified theory of dark matter, JHEP 12 (2008) 104 [arXiv:0810.0714] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    E.J. Chun and J.-C. Park, Dark matter and sub-GeV hidden U(1) in GMSB models, JCAP 02 (2009) 026 [arXiv:0812.0308] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Kinetic mixing as the origin of light dark scales, Phys. Rev. D 80 (2009) 035008 [arXiv:0902.3246] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Katz and R. Sundrum, Breaking the dark force, JHEP 06 (2009) 003 [arXiv:0902.3271] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    D.E. Morrissey, D. Poland and K.M. Zurek, Abelian hidden sectors at a GeV, JHEP 07 (2009) 050 [arXiv:0904.2567] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    T. Cohen, D.J. Phalen, A. Pierce and K.M. Zurek, Asymmetric dark matter from a GeV hidden sector, Phys. Rev. D 82 (2010) 056001 [arXiv:1005.1655] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Andreas, M. Goodsell and A. Ringwald, Dark matter and dark forces from a supersymmetric hidden sector, arXiv:1109.2869 [INSPIRE].
  14. [14]
    M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].ADSGoogle Scholar
  15. [15]
    R. Essig, P. Schuster and N. Toro, Probing dark forces and light hidden sectors at low-energy e+e colliders, Phys. Rev. D 80 (2009) 015003 [arXiv:0903.3941] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Jaeckel and A. Ringwald, The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Redondo and A. Ringwald, Light shining through walls, Contemp. Phys. 52 (2011) 211 [arXiv:1011.3741] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Andreas, Dark forces and dark matter in a hidden sector, arXiv:1110.2636 [INSPIRE].
  20. [20]
    S. Abel and B. Schofield, Brane anti-brane kinetic mixing, millicharged particles and SUSY breaking, Nucl. Phys. B 685 (2004) 150 [hep-th/0311051] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  21. [21]
    D. Lüst and S. Stieberger, Gauge threshold corrections in intersecting brane world models, Fortsch. Phys. 55 (2007) 427 [hep-th/0302221] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  22. [22]
    S.A. Abel, J. Jaeckel, V.V. Khoze and A. Ringwald, Illuminating the hidden sector of string theory by shining light through a magnetic field, Phys. Lett. B 666 (2008) 66 [hep-ph/0608248] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S. Abel, M. Goodsell, J. Jaeckel, V. Khoze and A. Ringwald, Kinetic mixing of the photon with hidden U(1)s in string phenomenology, JHEP 07 (2008) 124 [arXiv:0803.1449] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, Naturally light hidden photons in large volume string compactifications, JHEP 11 (2009) 027 [arXiv:0909.0515] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    F. Gmeiner and G. Honecker, Complete gauge threshold corrections for intersecting fractional D6-branes: the Z6 and Z6 standard models, Nucl. Phys. B 829 (2010) 225 [arXiv:0910.0843] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  26. [26]
    M. Goodsell, Light hidden U(1)s from string theory, arXiv:0912.4206 [INSPIRE].
  27. [27]
    M. Bullimore, J.P. Conlon and L.T. Witkowski, Kinetic mixing of U(1)s for local string models, JHEP 11 (2010) 142 [arXiv:1009.2380] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    M. Cicoli, M. Goodsell, J. Jaeckel and A. Ringwald, Testing string vacua in the lab: from a hidden CMB to dark forces in flux compactifications, JHEP 07 (2011) 114 [arXiv:1103.3705] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G. Honecker, Kähler metrics and gauge kinetic functions for intersecting D6-branes on toroidal orbifolds - The complete perturbative story, arXiv:1109.3192 [INSPIRE].
  30. [30]
    K.R. Dienes, C.F. Kolda and J. March-Russell, Kinetic mixing and the supersymmetric gauge hierarchy, Nucl. Phys. B 492 (1997) 104 [hep-ph/9610479] [INSPIRE].ADSGoogle Scholar
  31. [31]
    M. Goodsell and A. Ringwald, Light hidden-sector U(1)s in string compactifications, Fortsch. Phys. 58 (2010) 716 [arXiv:1002.1840] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Lukas and K. Stelle, Heterotic anomaly cancellation in five-dimensions, JHEP 01 (2000) 010 [hep-th/9911156] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    R. Blumenhagen, G. Honecker and T. Weigand, Loop-corrected compactifications of the heterotic string with line bundles, JHEP 06 (2005) 020 [hep-th/0504232] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    O. Lebedev, H.P. Nilles, S. Raby, S. Ramos-Sanchez, M. Ratz, et al., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett. B 645 (2007) 88 [hep-th/0611095] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    O. Lebedev, H.P. Nilles, S. Ramos-Sanchez, M. Ratz and P.K. Vaudrevange, Heterotic mini-landscape. (II). Completing the search for MSSM vacua in a Z6 orbifold, Phys. Lett. B 668 (2008) 331 [arXiv:0807.4384] [INSPIRE].MathSciNetADSGoogle Scholar
  36. [36]
    H.P. Nilles, S. Ramos-Sanchez, M. Ratz and P.K. Vaudrevange, From strings to the MSSM, Eur. Phys. J. C 59 (2009) 249 [arXiv:0806.3905] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  37. [37]
    V. Kaplunovsky and J. Louis, Field dependent gauge couplings in locally supersymmetric effective quantum field theories, Nucl. Phys. B 422 (1994) 57 [hep-th/9402005] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  38. [38]
    K. Benakli and M. Goodsell, Dirac gauginos and kinetic mixing, Nucl. Phys. B 830 (2010) 315 [arXiv:0909.0017] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    H.M. Lee, Gauge coupling unification in six dimensions, Phys. Rev. D 75 (2007) 065009 [Erratum ibid. D 76 (2007) 029902] [hep-ph/0611196] [INSPIRE].ADSGoogle Scholar
  40. [40]
    V. Kaplunovsky and J. Louis, On gauge couplings in string theory, Nucl. Phys. B 444 (1995) 191 [hep-th/9502077] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    D. Bailin and A. Love, Orbifold compactifications of string theory, Phys. Rept. 315 (1999) 285 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    K.S. Choi and J.E. Kim, Lecture notes on physics 696, Springer, Berlin Germany (2006).Google Scholar
  43. [43]
    S. Ramos-Sanchez, Towards low energy physics from the heterotic string, Fortsch. Phys. 10 (2009) 907 [arXiv:0812.3560] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    P.K. Vaudrevange, Grand unification in the heterotic brane world, arXiv:0812.3503 [INSPIRE].
  45. [45]
    T. Kobayashi and N. Ohtsubo, Geometrical aspects of ZN orbifold phenomenology, Int. J. Mod. Phys. A 9 (1994) 87 [INSPIRE].MathSciNetADSGoogle Scholar
  46. [46]
    J. Casas, E. Katehou and C. Muñoz, U(1) charges in orbifolds: anomaly cancellation and phenomenological consequences, Nucl. Phys. B 317 (1989) 171 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    T. Kobayashi and H. Nakano, ’AnomalousU(1) symmetry in orbifold string models, Nucl. Phys. B 496 (1997) 103 [hep-th/9612066] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  48. [48]
    E. Witten, Some properties of O(32) superstrings, Phys. Lett. B 149 (1984) 351 [INSPIRE].MathSciNetADSGoogle Scholar
  49. [49]
    M.B. Green and J.H. Schwarz, Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory, Phys. Lett. B 149 (1984) 117 [INSPIRE].MathSciNetADSGoogle Scholar
  50. [50]
    M. Dine, N. Seiberg and E. Witten, Fayet-Iliopoulos terms in string theory, Nucl. Phys. B 289 (1987) 589 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    I. Senda and A. Sugamoto, Orbifold models and modular transformation, Nucl. Phys. B 302 (1988) 291 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds. 2., Nucl. Phys. B 274 (1986) 285 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    C. Vafa, Modular invariance and discrete torsion on orbifolds, Nucl. Phys. B 273 (1986) 592 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    F. Ploger, S. Ramos-Sanchez, M. Ratz and P.K. Vaudrevange, Mirage torsion, JHEP 04 (2007) 063 [hep-th/0702176] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    L.J. Dixon, V. Kaplunovsky and J. Louis, Moduli dependence of string loop corrections to gauge coupling constants, Nucl. Phys. B 355 (1991) 649 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    O. Lebedev, H.P. Nilles, S. Raby, S. Ramos-Sanchez, M. Ratz, et al., The heterotic road to the MSSM with R parity, Phys. Rev. D 77 (2008) 046013 [arXiv:0708.2691] [INSPIRE].ADSGoogle Scholar
  57. [57]
    F. Brummer, R. Kappl, M. Ratz and K. Schmidt-Hoberg, Approximate r-symmetries and the μ term, JHEP 04 (2010) 006 [arXiv:1003.0084] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    O. Lebedev and S. Ramos-Sanchez, The NMSSM and string theory, Phys. Lett. B 684 (2010) 48 [arXiv:0912.0477] [INSPIRE].MathSciNetADSGoogle Scholar
  59. [59]
    M. Spalinski, On the discrete symmetry group of Narian orbifolds, Phys. Lett. B 275 (1992) 47 [INSPIRE].MathSciNetADSGoogle Scholar
  60. [60]
    J. Erler, D. Jungnickel and H.P. Nilles, Space duality and quantized Wilson lines, Phys. Lett. B 276 (1992) 303 [INSPIRE].MathSciNetADSGoogle Scholar
  61. [61]
    D. Bailin, A. Love, W. Sabra and S. Thomas, Modular symmetries in Zn orbifold compactified string theories with Wilson lines, Mod. Phys. Lett. A 9 (1994) 1229 [hep-th/9312122] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  62. [62]
    S.L. Parameswaran, S. Ramos-Sanchez and I. Zavala, On moduli stabilisation and de Sitter vacua in MSSM heterotic orbifolds, JHEP 01 (2011) 071 [arXiv:1009.3931] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    F. Brummer and W. Buchmüller, Light higgsinos as heralds of higher-dimensional unification, JHEP 07 (2011) 010 [arXiv:1105.0802] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    A. Ibarra, A. Ringwald and C. Weniger, Hidden gauginos of an unbroken U(1): cosmological constraints and phenomenological prospects, JCAP 01 (2009) 003 [arXiv:0809.3196] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    A. Arvanitaki, N. Craig, S. Dimopoulos, S. Dubovsky and J. March-Russell, String photini at the LHC, Phys. Rev. D 81 (2010) 075018 [arXiv:0909.5440] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP 05 (2000) 003 [hep-ph/0001179] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    L. Ackerman, M.R. Buckley, S.M. Carroll and M. Kamionkowski, Dark matter and dark radiation, Phys. Rev. D 79 (2009) 023519 [arXiv:0810.5126] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    K.A. Intriligator and N. Seiberg, Lectures on supersymmetric gauge theories and electric-magnetic duality, Nucl. Phys. Proc. Suppl. 45BC (1996) 1 [hep-th/9509066] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  69. [69]
    J.E. Kim and B. Kyae, String MSSM through flipped SU(5) from Z12 orbifold, hep-th/0608085 [INSPIRE].
  70. [70]
    M. Blaszczyk, S. Nibbelink Groot, M. Ratz, F. Ruehle, M. Trapletti, et al., A Z 2 × Z 2 standard model, Phys. Lett. B 683 (2010) 340 [arXiv:0911.4905] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    O. Lebedev et al., Orbifold tables, (2006).Google Scholar
  72. [72]
    H.P. Nilles, S. Ramos-Sanchez, P.K. Vaudrevange and A. Wingerter, The orbifolder: a tool to study the low energy effective theory of heterotic orbifolds, arXiv:1110.5229 [INSPIRE].
  73. [73]
    P. Nilles, S. Ramos-Sánchez, P.K. Vaudrevange and A. Wingerter The orbifolder: a tool to study the low energy effective theory of heterotic orbifolds, (2011).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Mark Goodsell
    • 1
  • Saúl Ramos-Sánchez
    • 2
  • Andreas Ringwald
    • 3
  1. 1.CERN, Theory DivisionGeneva 23Switzerland
  2. 2.Department of Theoretical PhysicsPhysics Institute, UNAMMexico D.FMexico
  3. 3.Deutsches Elektronen-Synchrotron DESYHamburgGermany

Personalised recommendations