Advertisement

Moduli restriction and chiral matter in heterotic string compactifications

  • Gottfried Curio
Article

Abstract

Supersymmetric heterotic string models, built from a stable holomorphic vector bundle V on a Calabi-Yau threefold X , usually come with many vector bundle moduli whose stabilisation is a difficult and complex task. It is therefore of interest to look for bundle constructions which, from the outset, have as few as possible bundle moduli. One way to reach such a set-up is to start from a generic construction and to make discrete mod- ifications of it which are available only over a subset of the bundle moduli space. Turning on such discrete ‘twists’ constrains the moduli to the corresponding subset of their moduli space: the twisted bundle has less parametric freedom. We give an example of a set-up where this idea can be considered concretely. Such non-generic twists lead also to new contributions of chiral matter (which greatly enhances the flexibility in model building); their computation constitutes the main issue of this note.

Keywords

Superstrings and Heterotic Strings Superstring Vacua 

References

  1. [1]
    R. Friedman, J. Morgan and E. Witten, Vector bundles and F-theory, Commun. Math. Phys. 187 (1997) 679 [hep-th/9701162] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  2. [2]
    G. Curio, Chiral matter and transitions in heterotic string models, Phys. Lett. B 435 (1998) 39 [hep-th/9803224] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    R. Donagi and M. Wijnholt, Higgs Bundles and UV Completion in F-theory, arXiv:0904.1218 [INSPIRE].
  4. [4]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing the Complex Structure in Heterotic Calabi-Yau Vacua, JHEP 02 (2011) 088 [arXiv:1010.0255] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The Atiyah Class and Complex Structure Stabilization in Heterotic Calabi-Yau Compactifications, JHEP 10 (2011) 032 [arXiv:1107.5076] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A.P. Braun, A. Collinucci and R. Valandro, G-flux in F-theory and algebraic cycles, Nucl. Phys. B 856 (2012) 129 [arXiv:1107.5337] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    A. Lukas, B.A. Ovrut and D. Waldram, Nonstandard embedding and five-branes in heterotic M-theory, Phys. Rev. D 59 (1999) 106005 [hep-th/9808101] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    R. Donagi, A. Lukas, B.A. Ovrut and D. Waldram, Nonperturbative vacua and particle physics in M-theory, JHEP 05 (1999) 018 [hep-th/9811168] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    R. Donagi, A. Lukas, B.A. Ovrut and D. Waldram, Holomorphic vector bundles and nonperturbative vacua in M-theory, JHEP 06 (1999) 034 [hep-th/9901009] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    A. Lukas, B.A. Ovrut and D. Waldram, Heterotic M-theory vacua with five-branes, Fortsch. Phys. 48 (2000) 167 [hep-th/9903144] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  11. [11]
    B.A. Ovrut, N = 1 supersymmetric vacua in heterotic M-theory, Lectures presented at the APCTP Third Winter School on “Duality in Fields and Strings”, Cheju Island Korea, February 1999, hep-th/9905115 [INSPIRE].
  12. [12]
    A. Lukas and B.A. Ovrut, Symmetric vacua in heterotic M-theory, hep-th/9908100 [INSPIRE].
  13. [13]
    R. Donagi, B.A. Ovrut, T. Pantev and D. Waldram, Standard models from heterotic M-theory, Adv. Theor. Math. Phys. 5 (2002) 93 [hep-th/9912208] [INSPIRE].MathSciNetGoogle Scholar
  14. [14]
    R. Donagi, B.A. Ovrut, T. Pantev and D. Waldram, Standard model vacua in heterotic M-theory, hep-th/0001101 [INSPIRE].
  15. [15]
    R. Donagi, B.A. Ovrut, T. Pantev and D. Waldram, Standard model bundles on nonsimply connected Calabi-Yau threefolds, JHEP 08 (2001) 053 [hep-th/0008008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    B.A. Ovrut, Lectures on heterotic M-theory, Lectures presented at the TASI 2000 School on Strings, Branes and Extra Dimensions, Boulder, Co, June 3–29 2001 hep-th/0201032 [INSPIRE].
  17. [17]
    B.A. Ovrut, T. Pantev and R. Reinbacher, Torus fibered Calabi-Yau threefolds with nontrivial fundamental group, JHEP 05 (2003) 040 [hep-th/0212221] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    B.A. Ovrut, T. Pantev and R. Reinbacher, Invariant homology on standard model manifolds, JHEP 01 (2004) 059 [hep-th/0303020] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    R. Donagi, B.A. Ovrut, T. Pantev and R. Reinbacher, SU(4) instantons on Calabi-Yau threefolds with Z 2 × Z 2 fundamental group, JHEP 01 (2004) 022 [hep-th/0307273] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, Moduli dependent spectra of heterotic compactifications, Phys. Lett. B 598 (2004) 279 [hep-th/0403291] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, The particle spectrum of heterotic compactifications, JHEP 12 (2004) 054 [hep-th/0405014] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, Higgs doublets, split multiplets and heterotic SU(3) C × SU(2) L × U(1) Y spectra, Phys. Lett. B 618 (2005) 259 [hep-th/0409291] [INSPIRE].ADSGoogle Scholar
  23. [23]
    V. Braun, B.A. Ovrut, T. Pantev and R. Reinbacher, Elliptic Calabi-Yau threefolds with Z 3 × Z 3 Wilson lines, JHEP 12 (2004) 062 [hep-th/0410055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, The Spectra of heterotic standard model vacua, JHEP 06 (2005) 070 [hep-th/0411156] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A Heterotic standard model, Phys. Lett. B 618 (2005) 252 [hep-th/0501070] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A Standard model from the E 8 × E 8 heterotic superstring, JHEP 06 (2005) 039 [hep-th/0502155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, Vector bundle extensions, sheaf cohomology and the heterotic standard model, Adv. Theor. Math. Phys. 10 (2006) 4 [hep-th/0505041] [INSPIRE].MathSciNetGoogle Scholar
  28. [28]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, The Exact MSSM spectrum from string theory, JHEP 05 (2006) 043 [hep-th/0512177] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    V. Braun, Y.-H. He and B.A. Ovrut, Yukawa couplings in heterotic standard models, JHEP 04 (2006) 019 [hep-th/0601204] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    V. Braun, Y.-H. He and B.A. Ovrut, Stability of the minimal heterotic standard model bundle, JHEP 06 (2006) 032 [hep-th/0602073] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    M. Ambroso, V. Braun and B.A. Ovrut, Two Higgs Pair Heterotic Vacua and Flavor-Changing Neutral Currents, JHEP 10 (2008) 046 [arXiv:0807.3319] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The Edge Of Supersymmetry: Stability Walls in Heterotic Theory, Phys. Lett. B 677 (2009) 190 [arXiv:0903.5088] [INSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stability Walls in Heterotic Theories, JHEP 09 (2009) 026 [arXiv:0905.1748] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    L.B. Anderson, J. Gray and B. Ovrut, Yukawa Textures From Heterotic Stability Walls, JHEP 05 (2010) 086 [arXiv:1001.2317] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    L.B. Anderson, V. Braun, R.L. Karp and B.A. Ovrut, Numerical Hermitian Yang-Mills Connections and Vector Bundle Stability in Heterotic Theories, JHEP 06 (2010) 107[arXiv:1004.4399] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    M. Ambroso and B.A. Ovrut, The Mass Spectra, Hierarchy and Cosmology of B-L MSSM Heterotic Compactifications, arXiv:1005.5392 [INSPIRE].
  37. [37]
    R. Donagi, Taniguchi lecture on principal bundles on elliptic fibrations, hep-th/9802094 [INSPIRE].
  38. [38]
    V. Bouchard and R. Donagi, An SU(5) heterotic standard model, Phys. Lett. B 633 (2006) 783 [hep-th/0512149] [INSPIRE].MathSciNetADSGoogle Scholar
  39. [39]
    V. Bouchard, M. Cvetiˇc and R. Donagi, Tri-linear couplings in an heterotic minimal supersymmetric standard model, Nucl. Phys. B 745 (2006) 62 [hep-th/0602096] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    R. Donagi, R. Reinbacher and S.-T. Yau, Yukawa couplings on quintic threefolds, hep-th/0605203 [INSPIRE].
  41. [41]
    V. Bouchard and R. Donagi, On a class of non-simply connected Calabi-Yau threefolds, Comm. Numb. Theor. Phys. 2 (2008) 1 [arXiv:0704.3096] [INSPIRE].MathSciNetMATHGoogle Scholar
  42. [42]
    V. Bouchard and R. Donagi, On heterotic model constraints, JHEP 08 (2008) 060[arXiv:0804.2096] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    A. Bak, V. Bouchard and R. Donagi, Exploring a new peak in the heterotic landscape, JHEP 06 (2010) 108 [arXiv:0811.1242] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    Y.-H. He, M. Kreuzer, S.-J. Lee and A. Lukas, Heterotic Bundles on Calabi-Yau Manifolds with Small Picard Number, JHEP 12 (2011) 039 [arXiv:1108.1031] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    Y.-H. He, An Algorithmic Approach to Heterotic String Phenomenology, Mod. Phys. Lett. A 25 (2010) 79 [arXiv:1001.2419] [INSPIRE].ADSGoogle Scholar
  46. [46]
    L.B. Anderson, J. Gray, Y.-H. He and A. Lukas, Exploring Positive Monad Bundles And A New Heterotic Standard Model, JHEP 02 (2010) 054 [arXiv:0911.1569] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    Y.-H. He, S.-J. Lee and A. Lukas, Heterotic Models from Vector Bundles on Toric Calabi-Yau Manifolds, JHEP 05 (2010) 071 [arXiv:0911.0865] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    L.B. Anderson, J. Gray, D. Grayson, Y.-H. He and A. Lukas, Yukawa Couplings in Heterotic Compactification, Commun. Math. Phys. 297 (2010) 95 [arXiv:0904.2186] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  49. [49]
    M. Gabella, Y.-H. He and A. Lukas, An Abundance of Heterotic Vacua, JHEP 12 (2008) 027[arXiv:0808.2142] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    L.B. Anderson, Y.-H. He and A. Lukas, Monad Bundles in Heterotic String Compactifications, JHEP 07 (2008) 104 [arXiv:0805.2875] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    L.B. Anderson, Y.-H. He and A. Lukas, Heterotic Compactification, An Algorithmic Approach, JHEP 07 (2007) 049 [hep-th/0702210] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    G. Curio, Higgs Multiplets in Heterotic GUT Models, JHEP 10 (2011) 102 [arXiv:1108.5610] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    B. Andreas and G. Curio, On the Existence of Stable bundles with prescribed Chern classes on Calabi-Yau threefolds, arXiv:1104.3435 [INSPIRE].
  54. [54]
    B. Andreas and G. Curio, Spectral Bundles and the DRY-Conjecture, arXiv:1012.3858 [INSPIRE].
  55. [55]
    B. Andreas and G. Curio, On possible Chern Classes of stable Bundles on Calabi-Yau threefolds, J. Geom. Phys. 61 (2011) 1378 [arXiv:1010.1644] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  56. [56]
    B. Andreas and G. Curio, Deformations of bundles and the standard model, Phys. Lett. B 655 (2007) 290 [arXiv:0706.1158] [INSPIRE].MathSciNetADSGoogle Scholar
  57. [57]
    B. Andreas and G. Curio, Extension Bundles and the Standard Model, JHEP 07 (2007) 053 [hep-th/0703210] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    B. Andreas and G. Curio, Heterotic Models without Fivebranes, J. Geom. Phys. 57 (2007) 2136 [hep-th/0611309] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  59. [59]
    B. Andreas and G. Curio, Invariant Bundles on B-fibered Calabi-Yau Spaces and the Standard Model, hep-th/0602247 [INSPIRE].
  60. [60]
    G. Curio, Standard model bundles of the heterotic string, Int. J. Mod. Phys. A 21 (2006) 1261 [hep-th/0412182] [INSPIRE].MathSciNetADSGoogle Scholar
  61. [61]
    B. Andreas, G. Curio and A. Klemm, Towards the Standard Model spectrum from elliptic Calabi-Yau, Int. J. Mod. Phys. A 19 (2004) 1987 [hep-th/9903052] [INSPIRE].MathSciNetADSGoogle Scholar
  62. [62]
    G. Curio, Chiral matter and transitions in heterotic string models, Phys. Lett. B 435 (1998) 39 [hep-th/9803224] [INSPIRE].MathSciNetADSGoogle Scholar
  63. [63]
    R. Donagi, B.A. Ovrut and D. Waldram, Moduli spaces of five-branes on elliptic Calabi-Yau threefolds, JHEP 11 (1999) 030 [hep-th/9904054] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    B.A. Ovrut, T. Pantev and J. Park, Small instanton transitions in heterotic M-theory, JHEP 05 (2000) 045 [hep-th/0001133] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    E. Lima, B.A. Ovrut, J. Park and R. Reinbacher, Nonperturbative superpotential from membrane instantons in heterotic M-theory, Nucl. Phys. B 614 (2001) 117 [hep-th/0101049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    E. Lima, B.A. Ovrut and J. Park, Five-brane superpotentials in heterotic M-theory, Nucl. Phys. B 626 (2002) 113 [hep-th/0102046] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    E. Buchbinder, R. Donagi and B.A. Ovrut, Vector bundle moduli and small instanton transitions, JHEP 06 (2002) 054 [hep-th/0202084] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    E.I. Buchbinder, R. Donagi and B.A. Ovrut, Superpotentials for vector bundle moduli, Nucl. Phys. B 653 (2003) 400 [hep-th/0205190] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    E.I. Buchbinder, R. Donagi and B.A. Ovrut, Vector bundle moduli superpotentials in heterotic superstrings and M-theory, JHEP 07 (2002) 066 [hep-th/0206203] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    Y.-H. He, B.A. Ovrut and R. Reinbacher, The Moduli of reducible vector bundles, JHEP 03 (2004) 043 [hep-th/0306121] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    E.I. Buchbinder, B.A. Ovrut and R. Reinbacher, Instanton moduli in string theory, JHEP 04 (2005) 008 [hep-th/0410200] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  72. [72]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, Heterotic standard model moduli, JHEP 01 (2006) 025 [hep-th/0509051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  73. [73]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, Moduli dependent mu-terms in a heterotic standard model, JHEP 03 (2006) 006 [hep-th/0510142] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  74. [74]
    V. Braun and B.A. Ovrut, Stabilizing moduli with a positive cosmological constant in heterotic M-theory, JHEP 07 (2006) 035 [hep-th/0603088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  75. [75]
    V. Braun, E.I. Buchbinder and B.A. Ovrut, Dynamical SUSY breaking in heterotic M-theory, Phys. Lett. B 639 (2006) 566 [hep-th/0606166] [INSPIRE].MathSciNetADSGoogle Scholar
  76. [76]
    V. Braun, E.I. Buchbinder and B.A. Ovrut, Towards realizing dynamical SUSY breaking in heterotic model building, JHEP 10 (2006) 041 [hep-th/0606241] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  77. [77]
    J. Gray, A. Lukas and B. Ovrut, Perturbative anti-brane potentials in heterotic M-theory, Phys. Rev. D 76 (2007) 066007 [hep-th/0701025] [INSPIRE].MathSciNetADSGoogle Scholar
  78. [78]
    V. Braun, M. Kreuzer, B.A. Ovrut and E. Scheidegger, Worldsheet instantons, torsion curves and non-perturbative superpotentials, Phys. Lett. B 649 (2007) 334 [hep-th/0703134] [INSPIRE].MathSciNetADSGoogle Scholar
  79. [79]
    V. Braun, M. Kreuzer, B.A. Ovrut and E. Scheidegger, Worldsheet instantons and torsion curves, part A: Direct computation, JHEP 10 (2007) 022 [hep-th/0703182] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  80. [80]
    V. Braun, M. Kreuzer, B.A. Ovrut and E. Scheidegger, Worldsheet Instantons and Torsion Curves, Part B: Mirror Symmetry, JHEP 10 (2007) 023 [arXiv:0704.0449] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  81. [81]
    J. Gray, A. Lukas and B. Ovrut, Flux, gaugino condensation and anti-branes in heterotic M-theory, Phys. Rev. D 76 (2007) 126012 [arXiv:0709.2914] [INSPIRE].MathSciNetADSGoogle Scholar
  82. [82]
    M. Ambroso and B. Ovrut, The B-L/Electroweak Hierarchy in Heterotic String and M-theory, JHEP 10 (2009) 011 [arXiv:0904.4509] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  83. [83]
    M. Ambroso and B.A. Ovrut, The B-L/Electroweak Hierarchy in Smooth Heterotic Compactifications, Int. J. Mod. Phys. A 25 (2010) 2631 [arXiv:0910.1129] [INSPIRE].MathSciNetADSGoogle Scholar
  84. [84]
    T. Brelidze and B.A. Ovrut, B-L Cosmic Strings in Heterotic Standard Models, JHEP 07 (2010) 077 [arXiv:1003.0234] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing the Complex Structure in Heterotic Calabi-Yau Vacua, JHEP 02 (2011) 088 [arXiv:1010.0255] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  86. [86]
    L.B. Anderson, J. Gray and B.A. Ovrut, Transitions in the Web of Heterotic Vacua, Fortsch. Phys. 59 (2011) 327 [arXiv:1012.3179] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  87. [87]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing All Geometric Moduli in Heterotic Calabi-Yau Vacua, Phys. Rev. D 83 (2011) 106011 [arXiv:1102.0011] [INSPIRE].ADSGoogle Scholar
  88. [88]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The Atiyah Class and Complex Structure Stabilization in Heterotic Calabi-Yau Compactifications, JHEP 10 (2011) 032 [arXiv:1107.5076] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    G. Curio and R.Y. Donagi, Moduli in N = 1 heterotic/F theory duality, Nucl. Phys. B 518 (1998) 603 [hep-th/9801057] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  90. [90]
    G. Curio, On the Heterotic World-sheet Instanton Superpotential and its individual Contributions, JHEP 08 (2010) 092 [arXiv:1006.5568] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  91. [91]
    G. Curio, Perspectives on Pfaffians of Heterotic World-sheet Instantons, JHEP 09 (2009) 131 [arXiv:0904.2738] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  92. [92]
    G. Curio, World-sheet Instanton Superpotentials in Heterotic String theory and their Moduli Dependence, JHEP 09 (2009) 125 [arXiv:0810.3087] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Arnold-Sommerfeld-Center for Theoretical Physics, Department für PhysikLudwig-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations