Journal of High Energy Physics

, 2011:151 | Cite as

G-structures and domain walls in heterotic theories

  • Andre Lukas
  • Cyril Matti


We consider heterotic string solutions based on a warped product of a four-dimensional domain wall and a six-dimensional internal manifold, preserving two supercharges. The constraints on the internal manifolds with SU(3) structure are derived. They are found to be generalized half-flat manifolds with a particular pattern of torsion classes and they include half-flat manifolds and Strominger’s complex non-Kahler manifolds as special cases. We also verify that previous heterotic compactifications on half-flat mirror manifolds are based on this class of solutions.


Flux compactifications Superstrings and Heterotic Strings Supersymmetric Effective Theories 


  1. [1]
    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys. B 258 (1985) 46 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A heterotic standard model, Phys. Lett. B 618 (2005) 252 [hep-th/0501070] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A standard model from the E 8 × E 8 heterotic superstring, JHEP 06 (2005) 039 [hep-th/0502155] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    V. Bouchard and R. Donagi, An SU(5) heterotic standard model, Phys. Lett. B 633 (2006) 783 [hep-th/0512149] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    L.B. Anderson, J. Gray, Y.-H. He and A. Lukas, Exploring positive monad bundles and a new heterotic standard model, JHEP 02 (2010) 054 [arXiv:0911.1569] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    A. Strominger, Superstrings with torsion, Nucl. Phys. B 274 (1986) 253 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    S. Gurrieri, A. Lukas and A. Micu, Heterotic on half-flat, Phys. Rev. D 70 (2004) 126009 [hep-th/0408121] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    S. Gurrieri, A. Lukas and A. Micu, Heterotic string compactifications on half-flat manifolds II, JHEP 12 (2007) 081 [arXiv:0709.1932] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    B. de Carlos, S. Gurrieri, A. Lukas and A. Micu, Moduli stabilisation in heterotic string compactifications, JHEP 03 (2006) 005 [hep-th/0507173] [SPIRES].CrossRefGoogle Scholar
  12. [12]
    S. Gurrieri, Compactifications on half-flat manifolds, Fortsch. Phys. 53 (2005) 278 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  13. [13]
    N.J. Hitchin, Stable forms and special metrics, in Proceedings of the Congress in memory of Alfred Gray, M. Fernandez and J. Wolf eds., AMS Contemporary Mathematics Series [math.DG/0107101] [SPIRES].
  14. [14]
    S. Chiossi and S. Salamon, The intrinsic torsion of SU(3) and G2 structures, math.DG/0202282 [SPIRES].
  15. [15]
    M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    G. Lopes Cardoso et al., Non-Kähler string backgrounds and their five torsion classes, Nucl. Phys. B 652 (2003) 5 [hep-th/0211118] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    U. Gran, P. Lohrmann and G. Papadopoulos, The spinorial geometry of supersymmetric heterotic string backgrounds, JHEP 02 (2006) 063 [hep-th/0510176] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 2: Loop amplitudes, anomalies and phenomenology, Cambridge University Press, Cambridge U.K. (1987) [SPIRES].MATHGoogle Scholar
  19. [19]
    J. Polchinski, String theory. Volume 2: Superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998) [SPIRES].Google Scholar
  20. [20]
    I. Benmachiche, J. Louis and D. Martinez-Pedrera, The effective action of the heterotic string compactified on manifolds with SU(3) structure, Class. Quant. Grav. 25 (2008) 135006 [arXiv:0802.0410] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    T. Ali and G.B. Cleaver, The Ricci curvature of half-flat manifolds, JHEP 05 (2007) 009 [hep-th/0612171] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    T. Ali and G.B. Cleaver, A note on the standard embedding on half-flat manifolds, JHEP 07 (2008) 121 [arXiv:0711.3248] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    S. Gurrieri, J. Louis, A. Micu and D. Waldram, Mirror symmetry in generalized Calabi-Yau compactifications, Nucl. Phys. B 654 (2003) 61 [hep-th/0211102] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four-folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477] [hep-th/9906070] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    M. Falcitelli, A. Farinola and S. Salamon, Almost-Hermitian goemetry, Differ. Geom. Appl. 4 (1994) 259. MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    M. Eto and N. Sakai, Solvable models of domain walls in N = 1 supergravity, Phys. Rev. D 68 (2003) 125001 [hep-th/0307276] [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    M. Cvetič and H.H. Soleng, Supergravity domain walls, Phys. Rept. 282 (1997) 159 [hep-th/9604090] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992) [SPIRES].Google Scholar
  29. [29]
    C. Mayer and T. Mohaupt, Domain walls, Hitchin’s flow equations and G 2 -manifolds, Class. Quant. Grav. 22 (2005) 379 [hep-th/0407198] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  30. [30]
    P. Smyth and S. Vaula, Domain wall flow equations and SU(3) × SU(3) structure compactifications, Nucl. Phys. B 828 (2010) 102 [arXiv:0905.1334] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    J.P. Gauntlett, D. Martelli, S. Pakis and D. Waldram, G-structures and wrapped NS5-branes, Commun. Math. Phys. 247 (2004) 421 [hep-th/0205050] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  32. [32]
    T. Friedrich and S. Ivanov, Killing spinor equations in dimension 7 and geometry of integrable G 2 -manifolds, math/0112201 [SPIRES].
  33. [33]
    J. Held, D. Lüst, F. Marchesano and L. Martucci, DWSB in heterotic flux compactifications, JHEP 06 (2010) 090 [arXiv:1004.0867] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B 475 (1996) 94 [hep-th/9603142] [SPIRES].ADSGoogle Scholar
  35. [35]
    E. Witten, Strong coupling expansion of Calabi-Yau compactification, Nucl. Phys. B 471 (1996) 135 [hep-th/9602070] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, The universe as a domain wall, Phys. Rev. D 59 (1999) 086001 [hep-th/9803235] [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    P. Kaste, R. Minasian and A. Tomasiello, Supersymmetric M-theory compactifications with fluxes on seven-manifolds and G-structures, JHEP 07 (2003) 004 [hep-th/0303127] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    A. Lukas and P.M. Saffin, M-theory compactification, fluxes and AdS 4, Phys. Rev. D 71 (2005) 046005 [hep-th/0403235] [SPIRES].MathSciNetADSGoogle Scholar
  39. [39]
    P. Candelas and X. de la Ossa, Moduli space of Calabi-Yau manifolds, Nucl. Phys. B 355 (1991) 455 [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Rudolf Peierls Center for Theoretical PhysicsOxford UniversityOxfordU.K.

Personalised recommendations