Advertisement

Journal of High Energy Physics

, 2011:123 | Cite as

The first order hydrodynamics via AdS/CFT correspondence in the Gauss-Bonnet gravity

  • Ya-Peng Hu
  • Huai-Fan Li
  • Zhang-Yu Nie
Article

Abstract

In the spirit of the AdS/CFT correspondence, we investigate the hydrodynamics of the dual conformal field in the Gauss-Bonnet gravity. By considering the parameters of the boosted black brane in the Gauss-Bonnet gravity as functions of boundary coordinates, and then solving the corresponding correction terms, we calculate the first order stress-energy tensor of the dual conformal field. From this first order stress-energy tensor, we also obtain the shear viscosity and entropy density. And these results are consistent with those of some previous works from the effective coupling of gravitons.

Keywords

Gauge-gravity correspondence Black Holes in String Theory AdS-CFT Correspondence 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MATHMathSciNetGoogle Scholar
  4. [4]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].Google Scholar
  6. [6]
    Y. Brihaye and B. Hartmann, Holographic superconductors in 3 + 1 dimensions away from the probe limit, Phys. Rev. D 81 (2010) 126008 [arXiv:1003.5130] [SPIRES].ADSGoogle Scholar
  7. [7]
    G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev. Lett. 93 (2004) 090602 [hep-th/0311175] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    J. Mas, Shear viscosity from R-charged AdS black holes, JHEP 03 (2006) 016 [hep-th/0601144] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    D.T. Son and A.O. Starinets, Hydrodynamics of R-charged black holes, JHEP 03 (2006) 052 [hep-th/0601157] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    O. Saremi, The viscosity bound conjecture and hydrodynamics of M2-brane theory at finite chemical potential, JHEP 10 (2006) 083 [hep-th/0601159] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    K. Maeda, M. Natsuume and T. Okamura, Viscosity of gauge theory plasma with a chemical potential from AdS/CFT, Phys. Rev. D 73 (2006) 066013 [hep-th/0602010] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    R.-G. Cai and Y.-W. Sun, Shear viscosity from AdS Born-Infeld black holes, JHEP 09 (2008) 115 [arXiv:0807.2377] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    R. Brustein and A.J.M. Medved, The ratio of shear viscosity to entropy density in generalized theories of gravity, Phys. Rev. D 79 (2009) 021901 [arXiv:0808.3498] [SPIRES].ADSGoogle Scholar
  17. [17]
    R. Brustein and A.J.M. Medved, The shear diffusion coefficient for generalized theories of gravity, Phys. Lett. B 671 (2009) 119 [arXiv:0810.2193] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].ADSGoogle Scholar
  19. [19]
    R.-G. Cai, Z.-Y. Nie and Y.-W. Sun, Shear viscosity from effective couplings of gravitons, Phys. Rev. D 78 (2008) 126007 [arXiv:0811.1665] [SPIRES].ADSGoogle Scholar
  20. [20]
    R.-G. Cai, Z.-Y. Nie, N. Ohta and Y.-W. Sun, Shear viscosity from Gauss-Bonnet gravity with a dilaton coupling, Phys. Rev. D 79 (2009) 066004 [arXiv:0901.1421] [SPIRES].ADSGoogle Scholar
  21. [21]
    D. Astefanesei, N. Banerjee and S. Dutta, Moduli and electromagnetic black brane holography, arXiv:1008.3852 [SPIRES].
  22. [22]
    A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    A. Buchel, Shear viscosity of boost invariant plasma at finite coupling, Nucl. Phys. B 802 (2008) 281 [arXiv:0801.4421] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    A. Buchel, Shear viscosity of CFT plasma at finite coupling, Phys. Lett. B 665 (2008) 298 [arXiv:0804.3161] [SPIRES].ADSGoogle Scholar
  25. [25]
    A. Buchel, Resolving disagreement for η/s in a CFT plasma at finite coupling, Nucl. Phys. B 803 (2008) 166 [arXiv:0805.2683] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    P. Benincasa and A. Buchel, Transport properties of N = 4 supersymmetric Yang-Mills theory at finite coupling, JHEP 01 (2006) 103 [hep-th/0510041] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    A. Buchel, R.C. Myers, M.F. Paulos and A. Sinha, Universal holographic hydrodynamics at finite coupling, Phys. Lett. B 669 (2008) 364 [arXiv:0808.1837] [SPIRES].ADSGoogle Scholar
  28. [28]
    R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to η/s, Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [SPIRES].ADSGoogle Scholar
  29. [29]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. II: sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    A. Buchel, On universality of stress-energy tensor correlation functions in supergravity, Phys. Lett. B 609 (2005) 392 [hep-th/0408095] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    T.D. Cohen, Is there a ‘most perfect fluid’ consistent with quantum field theory?, Phys. Rev. Lett. 99 (2007) 021602 [hep-th/0702136] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    D.T. Son and A.O. Starinets, Viscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    D.T. Son, Comment on ‘Is there a ‘most perfect fluid’ consistent with quantum field theory?’, Phys. Rev. Lett. 100 (2008) 029101 [arXiv:0709.4651] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    A. Cherman, T.D. Cohen and P.M. Hohler, A sticky business: the status of the cojectured viscosity/entropy density bound, JHEP 02 (2008) 026 [arXiv:0708.4201] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    J.-W. Chen, M. Huang, Y.-H. Li, E. Nakano and D.-L. Yang, Phase transitions and the perfectness of fluids, Phys. Lett. B 670 (2008) 18 [arXiv:0709.3434] [SPIRES].ADSGoogle Scholar
  37. [37]
    I. Fouxon, G. Betschart and J.D. Bekenstein, The bound on viscosity and the generalized second law of thermodynamics, Phys. Rev. D 77 (2008) 024016 [arXiv:0710.1429] [SPIRES].MathSciNetADSGoogle Scholar
  38. [38]
    A. Dobado, F.J. Llanes-Estrada and J.M.T. Rincon, The status of the KSS bound and its possible violations (how perfect can a fluid be?), AIP Conf. Proc. 1031 (2008) 221 [arXiv:0804.2601] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    K. Landsteiner and J. Mas, The shear viscosity of the non-commutative plasma, JHEP 07 (2007) 088 [arXiv:0706.0411] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].ADSGoogle Scholar
  41. [41]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and causality violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  43. [43]
    J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7 /CFT 6 , Gauss-Bonnet gravity and viscosity bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [SPIRES].CrossRefGoogle Scholar
  44. [44]
    X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP 04 (2010) 007 [arXiv:0911.3160] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    A. Adams, A. Maloney, A. Sinha and S.E. Vazquez, 1/N effects in non-relativistic gauge-gravity duality, JHEP 03 (2009) 097 [arXiv:0812.0166] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  47. [47]
    J. de Boer, M. Kulaxizi and A. Parnachev, Holographic Lovelock gravities and black holes, JHEP 06 (2010) 008 [arXiv:0912.1877] [SPIRES].CrossRefGoogle Scholar
  48. [48]
    X.O. Camanho and J.D. Edelstein, Causality in AdS/CFT and Lovelock theory, JHEP 06 (2010) 099 [arXiv:0912.1944] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  49. [49]
    X.O. Camanho, J.D. Edelstein and M.F. Paulos, Lovelock theories, holography and the fate of the viscosity bound, arXiv:1010.1682 [SPIRES].
  50. [50]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    M. Rangamani, Gravity & hydrodynamics: lectures on the fluid-gravity correspondence, Class. Quant. Grav. 26 (2009) 224003 [arXiv:0905.4352] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  52. [52]
    J. Hur, K.K. Kim and S.-J. Sin, Hydrodynamics with conserved current from the gravity dual, JHEP 03 (2009) 036 [arXiv:0809.4541] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  53. [53]
    J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  54. [54]
    N. Banerjee et al., Hydrodynamics from charged black branes, arXiv:0809.2596 [SPIRES].
  55. [55]
    H.S. Tan, Born-Infeld hydrodynamics via gauge/gravity duality, JHEP 04 (2009) 131 [arXiv:0903.3424] [SPIRES].CrossRefADSGoogle Scholar
  56. [56]
    D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  57. [57]
    R.C. Myers, Higher derivative gravity, surface terms and string theory, Phys. Rev. D 36 (1987) 392 [SPIRES].ADSGoogle Scholar
  58. [58]
    Y. Brihaye and E. Radu, Black objects in the Einstein-Gauss-Bonnet theory with negative cosmological constant and the boundary counterterm method, JHEP 09 (2008) 006 [arXiv:0806.1396] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  59. [59]
    D. Astefanesei, N. Banerjee and S. Dutta, (Un)attractor black holes in higher derivative AdS gravity, JHEP 11 (2008) 070 [arXiv:0806.1334] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  60. [60]
    D.G. Boulware and S. Deser, String generated gravity models, Phys. Rev. Lett. 55 (1985) 2656 [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    J.T. Wheeler, Symmetric solutions to the Gauss-Bonnet extended Einstein equations, Nucl. Phys. B 268 (1986) 737 [SPIRES].CrossRefADSGoogle Scholar
  62. [62]
    R.C. Myers and J.Z. Simon, Black hole thermodynamics in Lovelock gravity, Phys. Rev. D 38 (1988) 2434 [SPIRES].MathSciNetADSGoogle Scholar
  63. [63]
    R.-G. Cai and Q. Guo, Gauss-Bonnet black holes in dS spaces, Phys. Rev. D 69 (2004) 104025 [hep-th/0311020] [SPIRES].MathSciNetADSGoogle Scholar
  64. [64]
    R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [SPIRES].ADSGoogle Scholar
  65. [65]
    V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  66. [66]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [SPIRES].MathSciNetADSGoogle Scholar
  67. [67]
    R.B. Mann, Misner string entropy, Phys. Rev. D 60 (1999) 104047 [hep-th/9903229] [SPIRES].ADSGoogle Scholar
  68. [68]
    R.C. Myers, Stress tensors and Casimir energies in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 046002 [hep-th/9903203] [SPIRES].ADSGoogle Scholar
  69. [69]
    F. Bigazzi and A.L. Cotrone, An elementary stringy estimate of transport coefficients of large temperature QCD, JHEP 08 (2010) 128 [arXiv:1006.4634] [SPIRES].CrossRefADSGoogle Scholar
  70. [70]
    I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes, JHEP 04 (2009) 062 [arXiv:0901.1487] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Center for High-Energy PhysicsPeking UniversityBeijingChina
  2. 2.Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Department of Physics and Institute of Theoretical PhysicsShanxi Datong UniversityDatongChina
  4. 4.Department of Applied PhysicsXi’an Jiaotong UniversityXi’anChina

Personalised recommendations