Advertisement

Journal of High Energy Physics

, 2011:115 | Cite as

Vacuum misalignment corrections to tri-bimaximal mixing and form dominance

  • Stephen F. King
Article

Abstract

Tri-bimaximal neutrino mixing may arise from see-saw models based on family symmetry which is spontaneously broken by flavons with particular vacuum alignments. In this paper we derive approximate analytic results which express the deviations from tri-bimaximal neutrino mixing due to vacuum misalignment. We also relate vacuum misalignment to departures from form dominance, corresponding to complex deviations from the real orthogonal R matrix, where such corrections are necessary to allow for successful leptogenesis. The analytic results show that the corrections to tri-bimaximal mixing and form dominance depend on the pattern of the vacuum misalignment, with the two effects being uncorrelated.

Keywords

Neutrino Physics Discrete and Finite Symmetries 

References

  1. [1]
    P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].ADSGoogle Scholar
  2. [2]
    P.F. Harrison and W.G. Scott, Permutation symmetry, tri-bimaximal neutrino mixing and the S3 group characters, Phys. Lett. B 557 (2003) 76 [hep-ph/0302025] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].ADSGoogle Scholar
  4. [4]
    C.S. Lam, Determining Horizontal Symmetry from Neutrino Mixing, Phys. Rev. Lett. 101 (2008) 121602 [arXiv:0804.2622] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    C.S. Lam, The Unique Horizontal Symmetry of Leptons, Phys. Rev. D 78 (2008) 073015 [arXiv:0809.1185] [SPIRES].ADSGoogle Scholar
  6. [6]
    W. Grimus, L. Lavoura and P.O. Ludl, Is S4 the horizontal symmetry of tri-bimaximal lepton mixing?, J. Phys. G 36 (2009) 115007 [arXiv:0906.2689] [SPIRES].ADSGoogle Scholar
  7. [7]
    C.S. Lam, A bottom-up analysis of horizontal symmetry, arXiv:0907.2206 [SPIRES].
  8. [8]
    S.F. King and C. Luhn, On the origin of neutrino flavour symmetry, JHEP 10 (2009) 093 [arXiv:0908.1897] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [SPIRES].ADSGoogle Scholar
  10. [10]
    S.F. King, Predicting neutrino parameters from SO(3) family symmetry and quark-lepton unification, JHEP 08 (2005) 105 [hep-ph/0506297] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    I. de Medeiros Varzielas and G.G. Ross, SU(3) family symmetry and neutrino bi-tri-maximal mixing, Nucl. Phys. B 733 (2006) 31 [hep-ph/0507176] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    S.F. King and M. Malinsky, Towards a complete theory of fermion masses and mixings with SO(3) family symmetry and 5d SO(10) unification, JHEP 11 (2006) 071 [hep-ph/0608021] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    I. de Medeiros Varzielas, S.F. King and G.G. Ross, Tri-bimaximal neutrino mixing from discrete subgroups of SU(3) and SO(3) family symmetry, Phys. Lett. B 644 (2007) 153 [hep-ph/0512313] [SPIRES].ADSGoogle Scholar
  14. [14]
    I. de Medeiros Varzielas, S.F. King and G.G. Ross, Neutrino tri-bi-maximal mixing from a non-Abelian discrete family symmetry, Phys. Lett. B 648 (2007) 201 [hep-ph/0607045] [SPIRES].ADSGoogle Scholar
  15. [15]
    S.F. King and M. Malinsky, A4 family symmetry and quark-lepton unification, Phys. Lett. B 645 (2007) 351 [hep-ph/0610250] [SPIRES].ADSGoogle Scholar
  16. [16]
    G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    G. Altarelli, Models of neutrino masses and mixings, hep-ph/0611117 [SPIRES].
  18. [18]
    G. Altarelli, F. Feruglio and Y. Lin, Tri-bimaximal neutrino mixing from orbifolding, Nucl. Phys. B 775 (2007) 31 [hep-ph/0610165] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    T.J. Burrows and S.F. King, A 4 Family Symmetry from SU(5) SUSY GUTs in 6d, Nucl. Phys. B 835 (2010) 174 [arXiv:0909.1433] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    G. Altarelli and F. Feruglio, Tri-Bimaximal Neutrino Mixing, A4 and the Modular Symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    M.-C. Chen and S.F. King, A4 See-Saw Models and Form Dominance, JHEP 06 (2009) 072 [arXiv:0903.0125] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    P.H. Frampton, S.T. Petcov and W. Rodejohann, On deviations from bimaximal neutrino mixing, Nucl. Phys. B 687 (2004) 31 [hep-ph/0401206] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    F. Plentinger and W. Rodejohann, Deviations from tribimaximal neutrino mixing, Phys. Lett. B 625 (2005) 264 [hep-ph/0507143] [SPIRES].ADSGoogle Scholar
  25. [25]
    T. Ohlsson and G. Seidl, A flavor symmetry model for bilarge leptonic mixing and the lepton masses, Nucl. Phys. B 643 (2002) 247 [hep-ph/0206087] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    E. Ma, Supersymmetric A 4 × Z 3 and A 4 Realizations of Neutrino Tribimaximal Mixing W ithout and W ith Corrections, Mod. Phys. Lett. A 22 (2007) 101 [hep-ph/0610342] [SPIRES].ADSGoogle Scholar
  27. [27]
    E. Ma, Neutrino mass matrix from Δ27 symmetry, Mod. Phys. Lett. A 21 (2006) 1917 [hep-ph/0607056] [SPIRES].ADSGoogle Scholar
  28. [28]
    S.-L. Chen, M. Frigerio and E. Ma, Hybrid seesaw neutrino masses with A 4 family symmetry, Nucl. Phys. B 724 (2005) 423 [hep-ph/0504181] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Tri-bimaximal Neutrino Mixing and Quark Masses from a Discrete Flavour Symmetry, Nucl. Phys. B 775 (2007) 120 [hep-ph/0702194] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    F. Plentinger and G. Seidl, Mapping out SU(5) GUTs with non-Abelian discrete flavor symmetries, Phys. Rev. D 78 (2008) 045004 [arXiv:0803.2889] [SPIRES].ADSGoogle Scholar
  31. [31]
    C. Csáki, C. Delaunay, C. Grojean and Y. Grossman, A Model of Lepton Masses from a Warped Extra Dimension, JHEP 10 (2008) 055 [arXiv:0806.0356] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    M.-C. Chen and K.T. Mahanthappa, CKM and Tri-bimaximal MNS Matrices in a SU(5) × (d) T Model, Phys. Lett. B 652 (2007) 34 [arXiv:0705.0714] [SPIRES].ADSGoogle Scholar
  33. [33]
    M.-C. Chen and K.T. Mahanthappa, Tri-bimaximal Neutrino Mixing and CKM Matrix in a SU(5)x(d)T Model, arXiv:0710.2118 [SPIRES].
  34. [34]
    R.N. Mohapatra and H.-B. Yu, Connecting Leptogenesis to CP-violation in Neutrino Mixings in a Tri-bimaximal Mixing model, Phys. Lett. B 644 (2007) 346 [hep-ph/0610023] [SPIRES].ADSGoogle Scholar
  35. [35]
    X.-G. He, A 4 group and tri-bimaximal neutrino mixing: A renormalizable model, Nucl. Phys. Proc. Suppl. 168 (2007) 350 [hep-ph/0612080] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    A. Aranda, Neutrino mixing from the double tetrahedral group T′, Phys. Rev. D 76 (2007) 111301 [arXiv:0707.3661] [SPIRES].ADSGoogle Scholar
  37. [37]
    A.H. Chan, H. Fritzsch, S. Luo and Z.-z. Xing, Deviations from Tri-bimaximal Neutrino Mixing in Type-II Seesaw and Leptogenesis, Phys. Rev. D 76 (2007) 073009 [arXiv:0704.3153] [SPIRES].ADSGoogle Scholar
  38. [38]
    Z.-z. Xing, Nontrivial correlation between the CKM and MNS matrices, Phys. Lett. B 618 (2005) 141 [hep-ph/0503200] [SPIRES].ADSGoogle Scholar
  39. [39]
    Z.-z. Xing, H. Zhang and S. Zhou, Nearly tri-bimaximal neutrino mixing and CP-violation from μ − τ symmetry breaking, Phys. Lett. B 641 (2006) 189 [hep-ph/0607091] [SPIRES].ADSGoogle Scholar
  40. [40]
    S.K. Kang, Z.-z. Xing and S. Zhou, Possible deviation from the tri-bimaximal neutrino mixing in a seesaw model, Phys. Rev. D 73 (2006) 013001 [hep-ph/0511157] [SPIRES].ADSGoogle Scholar
  41. [41]
    S. Luo and Z.-z. Xing, Generalized tri-bimaximal neutrino mixing and its sensitivity to radiative corrections, Phys. Lett. B 632 (2006) 341 [hep-ph/0509065] [SPIRES].ADSGoogle Scholar
  42. [42]
    M. Hirsch, E. Ma, J.C. Romao, J.W.F. Valle and A. Villanova del Moral, Minimal supergravity radiative effects on the tri-bimaximal neutrino mixing pattern, Phys. Rev. D 75 (2007) 053006 [hep-ph/0606082] [SPIRES].ADSGoogle Scholar
  43. [43]
    N.N. Singh, M. Rajkhowa and A. Borah, Deviation from tri-bimaximal mixings in two types of inverted hierarchical neutrino mass models, Pramana 69 (2007) 533 [hep-ph/0603189] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    X.-G. He and A. Zee, Minimal Modification To The Tri-bimaximal Neutrino Mixing, Phys. Lett. B 645 (2007) 427 [hep-ph/0607163] [SPIRES].ADSGoogle Scholar
  45. [45]
    N. Haba, A. Watanabe and K. Yoshioka, Twisted flavors and tri/bi-maximal neutrino mixing, Phys. Rev. Lett. 97 (2006) 041601 [hep-ph/0603116] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    Z.-z. Xing, Nearly tri-bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [SPIRES].ADSGoogle Scholar
  47. [47]
    Y. Lin, A predictive A4 model, Charged Lepton Hierarchy and Tri-bimaximal Sum Rule, Nucl. Phys. B 813 (2009) 91 [arXiv:0804.2867] [SPIRES].CrossRefADSGoogle Scholar
  48. [48]
    Y. Lin, A dynamical approach to link low energy phases with leptogenesis, Phys. Rev. D 80 (2009) 076011 [arXiv:0903.0831] [SPIRES].ADSGoogle Scholar
  49. [49]
    C. Luhn, S. Nasri and P. Ramond, Tri-Bimaximal Neutrino Mixing and the Family Symmetry Z 7Z 3, Phys. Lett. B 652 (2007) 27 [arXiv:0706.2341] [SPIRES].ADSGoogle Scholar
  50. [50]
    S.F. King and C. Luhn, A new family symmetry for SO(10) GUTs, Nucl. Phys. B 820 (2009) 269 [arXiv:0905.1686] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  51. [51]
    C. Hagedorn, S.F. King and C. Luhn, A SUSY GUT of Flavour with S4 × SU(5) to NLO, JHEP 06 (2010) 048 [arXiv:1003.4249] [SPIRES].CrossRefADSGoogle Scholar
  52. [52]
    S.F. King, Tri-bimaximal Neutrino Mixing and θ 13, Phys. Lett. B 675 (2009) 347 [arXiv:0903.3199] [SPIRES].ADSGoogle Scholar
  53. [53]
    M. Abbas and A.Y. Smirnov, Is the tri-bimaximal mixing accidental?, Phys. Rev. D 82 (2010) 013008 [arXiv:1004.0099] [SPIRES].ADSGoogle Scholar
  54. [54]
    P. Minkowski, μ → eγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].ADSGoogle Scholar
  55. [55]
    R. Howl and S.F. King, Solving the Flavour Problem in Supersymmetric Standard Models with Three Higgs Families, Phys. Lett. B 687 (2010) 355 [arXiv:0908.2067] [SPIRES].ADSGoogle Scholar
  56. [56]
    T. Kobayashi, Y. Omura and K. Yoshioka, Flavor Symmetry Breaking and Vacuum Alignment on Orbifolds, Phys. Rev. D 78 (2008) 115006 [arXiv:0809.3064] [SPIRES].ADSGoogle Scholar
  57. [57]
    T.J. Burrows and S.F. King, A 4 × SU(5) SUSY GUT of Flavour in 8d, Nucl. Phys. B 842 (2011) 107 [arXiv:1007.2310] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  58. [58]
    ISS Physics Working Group collaboration, A. Bandyopadhyay et al., Physics at a future Neutrino Factory and super-beam facility, Rept. Prog. Phys. 72 (2009) 106201 [arXiv:0710.4947] [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and mue, gamma, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [SPIRES].CrossRefADSGoogle Scholar
  60. [60]
    S. Choubey, S.F. King and M. Mitra, On the Vanishing of the CP Asymmetry in Leptogenesis due to Form Dominance, Phys. Rev. D 82 (2010) 033002 [arXiv:1004.3756] [SPIRES].ADSGoogle Scholar
  61. [61]
    S. Antusch, S.F. King and A. Riotto, Flavour-dependent leptogenesis with sequential dominance, JCAP 11 (2006) 011 [hep-ph/0609038] [SPIRES].ADSGoogle Scholar
  62. [62]
    S.F. King, Invariant see-saw models and sequential dominance, Nucl. Phys. B 786 (2007) 52 [hep-ph/0610239] [SPIRES].CrossRefADSGoogle Scholar
  63. [63]
    E.E. Jenkins and A.V. Manohar, Tribimaximal Mixing, Leptogenesis and θ 13, Phys. Lett. B 668 (2008) 210 [arXiv:0807.4176] [SPIRES].ADSGoogle Scholar
  64. [64]
    E. Bertuzzo, P. Di Bari, F. Feruglio and E. Nardi, Flavor symmetries, leptogenesis and the absolute neutrino mass scale, JHEP 11 (2009) 036 [arXiv:0908.0161] [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    D. Aristizabal Sierra, F. Bazzocchi, I. de Medeiros Varzielas, L. Merlo and S. Morisi, Tri-Bimaximal Lepton Mixing and Leptogenesis, Nucl. Phys. B 827 (2010) 34 [arXiv:0908.0907] [SPIRES].CrossRefADSGoogle Scholar
  66. [66]
    R.G. Felipe and H. Serodio, Constraints on leptogenesis from a symmetry viewpoint, Phys. Rev. D 81 (2010) 053008 [arXiv:0908.2947] [SPIRES].ADSGoogle Scholar
  67. [67]
    D. Aristizabal Sierra, F. Bazzocchi, I. de Medeiros Varzielas, L. Merlo and S. Morisi, Tri-Bimaximal Lepton Mixing and Leptogenesis, Nucl. Phys. B 827 (2010) 34 [arXiv:0908.0907] [SPIRES].CrossRefADSGoogle Scholar
  68. [68]
    E. Bertuzzo, P. Di Bari, F. Feruglio and E. Nardi, Flavor symmetries, leptogenesis and the absolute neutrino mass scale, JHEP 11 (2009) 036 [arXiv:0908.0161] [SPIRES].CrossRefADSGoogle Scholar
  69. [69]
    M. Honda and M. Tanimoto, Deviation from tri-bimaximal neutrino mixing in A 4 flavor symmetry, Prog. Theor. Phys. 119 (2008) 583 [arXiv:0801.0181] [SPIRES].CrossRefADSMATHGoogle Scholar
  70. [70]
    J. Barry and W. Rodejohann, Deviations from tribimaximal mixing due to the vacuum expectation value misalignment in A 4 models, Phys. Rev. D 81 (2010) 093002 [Erratum ibid. D 81 (2010) 119901] [arXiv:1003.2385] [SPIRES].ADSGoogle Scholar
  71. [71]
    S. Antusch, S. Boudjemaa and S.F. King, Neutrino Mixing Angles in Sequential Dominance to NLO and NNLO, JHEP 09 (2010) 096 [arXiv:1003.5498] [SPIRES].CrossRefADSGoogle Scholar
  72. [72]
    S.F. King, Atmospheric and solar neutrinos with a heavy singlet, Phys. Lett. B 439 (1998) 350 [hep-ph/9806440] [SPIRES].ADSGoogle Scholar
  73. [73]
    S.F. King, Atmospheric and solar neutrinos from single right-handed neutrino dominance and U(1) family symmetry, Nucl. Phys. B 562 (1999) 57 [hep-ph/9904210] [SPIRES].CrossRefADSGoogle Scholar
  74. [74]
    S.F. King, Large mixing angle MSW and atmospheric neutrinos from single right-handed neutrino dominance and U(1) family symmetry, Nucl. Phys. B 576 (2000) 85 [hep-ph/9912492] [SPIRES].CrossRefADSGoogle Scholar
  75. [75]
    S.F. King, Constructing the large mixing angle MNS matrix in see-saw models with right-handed neutrino dominance, JHEP 09 (2002) 011 [hep-ph/0204360] [SPIRES].CrossRefADSGoogle Scholar
  76. [76]
    S. Antusch and S.F. King, Sequential dominance, New J. Phys. 6 (2004) 110 [hep-ph/0405272] [SPIRES].CrossRefADSGoogle Scholar
  77. [77]
    S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, Running neutrino mass parameters in see-saw scenarios, JHEP 03 (2005) 024 [hep-ph/0501272] [SPIRES].CrossRefADSGoogle Scholar
  78. [78]
    P.H. Frampton, S.T. Petcov and W. Rodejohann, On deviations from bimaximal neutrino mixing, Nucl. Phys. B 687 (2004) 31 [hep-ph/0401206] [SPIRES].CrossRefADSGoogle Scholar
  79. [79]
    Z.-z. Xing, Nearly tri-bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [SPIRES].ADSGoogle Scholar
  80. [80]
    S. Antusch, S.F. King and M. Malinsky, Perturbative Estimates of Lepton Mixing Angles in Unified Models, Nucl. Phys. B 820 (2009) 32 [arXiv:0810.3863] [SPIRES].CrossRefADSGoogle Scholar
  81. [81]
    S. Boudjemaa and S.F. King, Deviations from Tri-bimaximal Mixing: Charged Lepton Corrections and Renormalization Group Running, Phys. Rev. D 79 (2009) 033001 [arXiv:0808.2782] [SPIRES].ADSGoogle Scholar
  82. [82]
    S. Antusch, S.F. King and M. Malinsky, Third Family Corrections to Quark and Lepton Mixing in SUSY Models with non-Abelian Family Symmetry, JHEP 05 (2008) 066 [arXiv:0712.3759] [SPIRES].CrossRefADSGoogle Scholar
  83. [83]
    S. Antusch, S.F. King and M. Malinsky, Third Family Corrections to Tri-bimaximal Lepton Mixing and a New Sum Rule, Phys. Lett. B 671 (2009) 263 [arXiv:0711.4727] [SPIRES].ADSGoogle Scholar
  84. [84]
    S.F. King, Parametrizing the lepton mixing matrix in terms of deviations from tri-bimaximal mixing, Phys. Lett. B 659 (2008) 244 [arXiv:0710.0530] [SPIRES].ADSGoogle Scholar
  85. [85]
    S. Antusch, P. Huber, S.F. King and T. Schwetz, Neutrino mixing sum rules and oscillation experiments, JHEP 04 (2007) 060 [hep-ph/0702286] [SPIRES].CrossRefADSGoogle Scholar
  86. [86]
    S. Antusch and S.F. King, Charged lepton corrections to neutrino mixing angles and CP phases revisited, Phys. Lett. B 631 (2005) 42 [hep-ph/0508044] [SPIRES].ADSGoogle Scholar
  87. [87]
    S. Antusch, L.E. Ibáñez and T. Macri, Neutrino Masses and Mixings from String Theory Instantons, JHEP 09 (2007) 087 [arXiv:0706.2132] [SPIRES].CrossRefADSGoogle Scholar
  88. [88]
    M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [SPIRES].CrossRefADSGoogle Scholar
  89. [89]
    S.F. King, Parametrizing the lepton mixing matrix in terms of deviations from tri-bimaximal mixing, Phys. Lett. B 659 (2008) 244 [arXiv:0710.0530] [SPIRES].ADSGoogle Scholar
  90. [90]
    Z.-z. Xing, Nearly tri-bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [SPIRES].ADSGoogle Scholar
  91. [91]
    N. Li and B.-Q. Ma, Parametrization of neutrino mixing matrix in tri-bimaximal mixing pattern, Phys. Rev. D 71 (2005) 017302 [hep-ph/0412126] [SPIRES].ADSGoogle Scholar
  92. [92]
    S. Parke, Neutrino Physics: Theoretical Status, talk at WIN’05, 20th International Workshop on Weak Interactions and Neutrinos, European Cultural Center, Delphi, Greece, June 6-11(2005), http://conferences.phys.uoa.gr/win05/.
  93. [93]
    P.F. Harrison, Deviations from Tri-bimaximal Mixing, talk at International scoping study of a future Neutrino Factory and super-beam facility, Rutherford Appleton Laboratory, U.K., April 24-28 (2006), http://www.hep.ph.ic.ac.uk/uknfic/iss0406/physics.html.
  94. [94]
    S. Pakvasa, W. Rodejohann and T.J. Weiler, TriMinimal Parametrization of the Neutrino Mixing Matrix, Phys. Rev. Lett. 100 (2008) 111801 [arXiv:0711.0052] [SPIRES].CrossRefADSGoogle Scholar
  95. [95]
    C.H. Albright, A. Dueck and W. Rodejohann, Possible Alternatives to Tri-bimaximal Mixing, Eur. Phys. J. C 70 (2010) 1099 [arXiv:1004.2798] [SPIRES].CrossRefADSGoogle Scholar
  96. [96]
    W. Grimus and L. Lavoura, A model for trimaximal lepton mixing, JHEP 09 (2008) 106 [arXiv:0809.0226] [SPIRES].CrossRefADSGoogle Scholar
  97. [97]
    S.F. King, Invariant see-saw models and sequential dominance, Nucl. Phys. B 786 (2007) 52 [hep-ph/0610239] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.

Personalised recommendations