Advertisement

SUSY splits, but then returns

  • Raman Sundrum
Article

Abstract

We study the phenomenon of accidental or “emergent” supersymmetry within gauge theory and connect it to the scenarios of Split Supersymmetry and Higgs compositeness. Combining these elements leads to a significant refinement and extension of the proposal of Partial Supersymmetry, in which supersymmetry is broken at very high energies but with a remnant surviving to the weak scale. The Hierarchy Problem is then solved by a non-trivial partnership between supersymmetry and compositeness, giving a promising approach for reconciling Higgs naturalness with the wealth of precision experimental data. We discuss aspects of this scenario from the AdS/CFT dual viewpoint of higher-dimensional warped compactification. It is argued that string theory constructions with high scale supersymmetry breaking which realize warped/composite solutions to the Hierarchy Problem may well be accompanied by some or all of the features described. The central phenomenological considerations and expectations are discussed, with more detailed modelling within warped effective field theory reserved for future work.

Keywords

Supersymmetric gauge theory AdS-CFT Correspondence Nonperturbative Effects Renormalization Group 

References

  1. [1]
    C. Csáki, TASI lectures on extra dimensions and branes, hep-ph/0404096 [SPIRES].
  2. [2]
    R. Sundrum, To the fifth dimension and back (TASI 2004), hep-th/0508134 [SPIRES].
  3. [3]
    H. Davoudiasl, S. Gopalakrishna, E. Ponton and J. Santiago, Warped 5-dimensional models: phenomenological status and experimental prospects, New J. Phys. 12 (2010) 075011 [arXiv:0908.1968] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].MathSciNetADSCrossRefMATHGoogle Scholar
  5. [5]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MathSciNetADSMATHGoogle Scholar
  6. [6]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MathSciNetMATHGoogle Scholar
  8. [8]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    H.L. Verlinde, Holography and compactification, Nucl. Phys. B 580 (2000) 264 [hep-th/9906182] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    J. Maldacena, unpublished remarks.Google Scholar
  11. [11]
    E. Witten, Comments by E. Witten on Sundrum & Giddings talk, talk given at IT P Santa Barbara conference “New dimensions in field theory and string theory”, November 17–20, Santa Barbara, U.S.A. (1999).Google Scholar
  12. [12]
    S.S. Gubser, AdS/CFT and gravity, Phys. Rev. D 63 (2001) 084017 [hep-th/9912001] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    E.P. Verlinde and H.L. Verlinde, RG-flow, gravity and the cosmological constant, JHEP 05 (2000) 034 [hep-th/9912018] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    M. Pérez-Victoria, Randall-Sundrum models and the regularized AdS/CFT correspondence, JHEP 05 (2001) 064 [hep-th/0105048] [SPIRES].CrossRefGoogle Scholar
  15. [15]
    N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    M.J. Strassler, Non-supersymmetric theories with light scalar fields and large hierarchies, hep-th/0309122 [SPIRES].
  18. [18]
    S. Kachru, D. Simic and S.P. Trivedi, Stable non-supersymmetric throats in string theory, JHEP 05 (2010) 067 [arXiv:0905.2970] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    M.A. Luty, Weak scale supersymmetry without weak scale supergravity, Phys. Rev. Lett. 89 (2002) 141801 [hep-th/0205077] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    O. DeWolfe and S.B. Giddings, Scales and hierarchies in warped compactifications and brane worlds, Phys. Rev. D 67 (2003) 066008 [hep-th/0208123] [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    T. Gherghetta and A. Pomarol, The standard model partly supersymmetric, Phys. Rev. D 67 (2003) 085018 [hep-ph/0302001] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    H.-S. Goh, M.A. Luty and S.-P. Ng, Supersymmetry without supersymmetry, JHEP 01 (2005) 040 [hep-th/0309103] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65] [hep-ph/0406088] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    A.G. Cohen, D.B. Kaplan and A.E. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [SPIRES].ADSGoogle Scholar
  27. [27]
    R. Sundrum, in preparation.Google Scholar
  28. [28]
    T.A. Kramer, Partially composite particle physics with and without supersymmetry, Ph.D. thesis, Johns Hopkins University, Baltimore, U.S.A. (2008).Google Scholar
  29. [29]
    C. Kokorelis, N = 1 supersymmetric standard models with no massless exotics from intersecting branes, hep-th/0406258 [SPIRES].
  30. [30]
    C. Kokorelis, Standard model compactifications of IIA Z 3 × Z 3 orientifolds from intersecting D6-branes, Nucl. Phys. B 732 (2006) 341 [hep-th/0412035] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    M.A. Luty and R. Rattazzi, Soft supersymmetry breaking in deformed moduli spaces, conformal theories and N = 2 Yang-Mills theory, JHEP 11 (1999) 001 [hep-th/9908085] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    D.B. Kaplan, Dynamical generation of supersymmetry, Phys. Lett. B 136 (1984) 162 [SPIRES].ADSGoogle Scholar
  33. [33]
    P. Breitenlohner and D.Z. Freedman, Positive energy in Anti-de Sitter backgrounds and gauged extended supergravity, Phys. Lett. B 115 (1982) 197 [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    G. Arutyunov and S. Frolov, Four-point functions of lowest weight CPOs in N = 4 SYM(4) in supergravity approximation, Phys. Rev. D 62 (2000) 064016 [hep-th/0002170] [SPIRES].MathSciNetADSGoogle Scholar
  35. [35]
    G. Arutyunov, S. Frolov and A.C. Petkou, Operator product expansion of the lowest weight CPOs in N = 4 SYM(4) at strong coupling, Nucl. Phys. B 586 (2000) 547 [Erratum ibid. B 609 (2001) 539] [hep-th/0005182] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    E. D’Hoker, S.D. Mathur, A. Matusis and L. Rastelli, The operator product expansion of N = 4 SYM and the 4-point functions of supergravity, Nucl. Phys. B 589 (2000) 38 [hep-th/9911222] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    E. D’Hoker and D.Z. Freedman, Gauge boson exchange in AdS(d + 1), Nucl. Phys. B 544 (1999) 612 [hep-th/9809179] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    N. Maru and N. Okada, Supersymmetric radius stabilization in warped extra dimensions, Phys. Rev. D 70 (2004) 025002 [hep-th/0312148] [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [SPIRES].ADSGoogle Scholar
  43. [43]
    H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [SPIRES].ADSGoogle Scholar
  44. [44]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [SPIRES].ADSGoogle Scholar
  45. [45]
    H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys. Lett. B 143 (1984) 152 [SPIRES].ADSGoogle Scholar
  46. [46]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [SPIRES].MathSciNetADSGoogle Scholar
  50. [50]
    K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    W.D. Goldberger and M.B. Wise, Bulk fields in the Randall-Sundrum compactification scenario, Phys. Rev. D 60 (1999) 107505 [hep-ph/9907218] [SPIRES].MathSciNetADSGoogle Scholar
  52. [52]
    N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [SPIRES].ADSGoogle Scholar
  53. [53]
    E.A. Mirabelli and M. Schmaltz, Yukawa hierarchies from split fermions in extra dimensions, Phys. Rev. D 61 (2000) 113011 [hep-ph/9912265] [SPIRES].ADSGoogle Scholar
  54. [54]
    Y. Grossman and M. Neubert, Neutrino masses and mixings in non-factorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [SPIRES].MathSciNetADSGoogle Scholar
  55. [55]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [SPIRES].ADSGoogle Scholar
  57. [57]
    S.J. Huber, Flavor violation and warped geometry, Nucl. Phys. B 666 (2003) 269 [hep-ph/0303183] [SPIRES].ADSCrossRefGoogle Scholar
  58. [58]
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [SPIRES].MathSciNetADSGoogle Scholar
  59. [59]
    S. Chang, J. Hisano, H. Nakano, N. Okada and M. Yamaguchi, Bulk standard model in the Randall-Sundrum background, Phys. Rev. D 62 (2000) 084025 [hep-ph/9912498] [SPIRES].MathSciNetADSGoogle Scholar
  60. [60]
    S.J. Huber and Q. Shafi, Higgs mechanism and bulk gauge boson masses in the Randall-Sundrum model, Phys. Rev. D 63 (2001) 045010 [hep-ph/0005286] [SPIRES].ADSGoogle Scholar
  61. [61]
    S.J. Huber, C.-A. Lee and Q. Shafi, Kaluza-Klein excitations of W and Z at the LHC?, Phys. Lett. B 531 (2002) 112 [hep-ph/0111465] [SPIRES].ADSGoogle Scholar
  62. [62]
    C. Csáki, J. Erlich and J. Terning, The effective lagrangian in the Randall-Sundrum model and electroweak physics, Phys. Rev. D 66 (2002) 064021 [hep-ph/0203034] [SPIRES].ADSGoogle Scholar
  63. [63]
    J.L. Hewett, F.J. Petriello and T.G. Rizzo, Precision measurements and fermion geography in the Randall-Sundrum model revisited, JHEP 09 (2002) 030 [hep-ph/0203091] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    G. Burdman, Constraints on the bulk standard model in the Randall-Sundrum scenario, Phys. Rev. D 66 (2002) 076003 [hep-ph/0205329] [SPIRES].ADSGoogle Scholar
  65. [65]
    D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [SPIRES].ADSCrossRefGoogle Scholar
  66. [66]
    R. Contino and A. Pomarol, Holography for fermions, JHEP 11 (2004) 058 [hep-th/0406257] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [SPIRES].ADSGoogle Scholar
  68. [68]
    C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [SPIRES].ADSCrossRefGoogle Scholar
  69. [69]
    S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor physics in the Randall-Sundrum model: I. Theoretical setup and electroweak precision tests, JHEP 10 (2008) 094 [arXiv:0807.4937] [SPIRES].ADSCrossRefGoogle Scholar
  70. [70]
    M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, ΔF = 2 observables and fine-tuning in a warped extra dimension with custodial protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [SPIRES].ADSCrossRefGoogle Scholar
  71. [71]
    K. Agashe, A. Azatov and L. Zhu, Flavor violation tests of warped/composite SM in the two-site approach, Phys. Rev. D 79 (2009) 056006 [arXiv:0810.1016] [SPIRES].ADSGoogle Scholar
  72. [72]
    K. Blum, Y. Grossman, Y. Nir and G. Perez, Combining \( K{ - }\bar{K} \) mixing and \( D{ - }\bar{D} \) mixing to constrain the flavor structure of new physics, Phys. Rev. Lett. 102 (2009) 211802 [arXiv:0903.2118] [SPIRES].ADSCrossRefGoogle Scholar
  73. [73]
    Y. Grossman, Y. Nir and G. Perez, Testing new indirect CP-violation, Phys. Rev. Lett. 103 (2009) 071602 [arXiv:0904.0305] [SPIRES].ADSCrossRefGoogle Scholar
  74. [74]
    O. Gedalia, G. Isidori and G. Perez, Combining direct & indirect kaon CP-violation to constrain the warped KK scale, Phys. Lett. B 682 (2009) 200 [arXiv:0905.3264] [SPIRES].ADSGoogle Scholar
  75. [75]
    O. Gedalia, Y. Grossman, Y. Nir and G. Perez, Lessons from Recent Measurements of \( D{ - }\bar{D} \) mixing, Phys. Rev. D 80 (2009) 055024 [arXiv:0906.1879] [SPIRES].ADSGoogle Scholar
  76. [76]
    R.N. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev. D 11 (1975) 2558 [SPIRES].ADSGoogle Scholar
  77. [77]
    G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [SPIRES].ADSGoogle Scholar
  78. [78]
    K. Agashe, R. Contino and R. Sundrum, Top compositeness and precision unification, Phys. Rev. Lett. 95 (2005) 171804 [hep-ph/0502222] [SPIRES].ADSCrossRefGoogle Scholar
  79. [79]
    Y. Zhang, H. An, X. Ji and R.N. Mohapatra, General CP-violation in minimal left-right symmetric model and constraints on the right-handed scale, Nucl. Phys. B 802 (2008) 247 [arXiv:0712.4218] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreU.S.A.

Personalised recommendations